einsum_impl.h 24.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

16
#include <set>
17

18 19
#include "glog/logging.h"

20 21 22 23 24 25
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/matmul_kernel.h"
#include "paddle/phi/kernels/reduce_sum_kernel.h"
#include "paddle/phi/kernels/transpose_kernel.h"
#include "paddle/utils/string/string_helper.h"

26 27
DECLARE_bool(einsum_opt);

28
namespace phi {
29

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
// check the validation of the Einsum equation.
// 1. the label must between 'a' - 'z'.
// 2. the dim of the same label must be same.
// 3. the broad cast dims in two operands is broadcastable.
// 4. there must exist '->' and the default output is complete in python.
// may be we can skip validation check in C++ and just put it in python.
inline static void ValidationCheck(const std::string& equation) {
  auto n_part = paddle::string::split_string(equation, "->").size();
  PADDLE_ENFORCE_EQ(n_part,
                    2,
                    phi::errors::InvalidArgument(
                        "Required at least one `->` in equation of EinsumOp."));
  size_t pos;
  auto trimed_equ = equation;
  if ((pos = trimed_equ.find("->", 0)) != std::string::npos) {
    trimed_equ.replace(pos, 2, ".");
  }
  auto is_valid_char = [](char c) {
    if (c >= 'a' && c <= 'z') return true;
    if (c == '.' || c == ',') return true;
    return false;
  };
  for (auto c : trimed_equ) {
    if (!is_valid_char(c))
      PADDLE_THROW(phi::errors::InvalidArgument(
          "Found invalid char in equation. Einsum only accept `a`-`z` and `...`"
          "but get:`%c`",
          c));
  }
}

enum LabelType {
  ALL_TYPE = 0,
  Batch = 1,    // ABO
64 65
  AO,           // AO --  free label
  BO,           // BO --  free label
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
  Contraction,  // AB
  Reduction,    // A, B
};

// map a label('a' - 'z') -> int, O(1) speed.
class LabelMap {
  constexpr static int N =
      26 + 1;  // 'a' - 'z' + '.', '.' is for broadcast dims
  int default_value;
  int map[N];

 public:
  explicit LabelMap(int default_value = 0) {
    this->default_value = default_value;
    for (int i = 0; i < N; ++i) map[i] = default_value;
  }
  int& operator[](int label) {
    int i = label - 'a';
    if (label == '.') i = N - 1;
    return map[i];
  }
  int operator[](int label) const {
    int i = label - 'a';
    if (label == '.') i = N - 1;
    return map[i];
  }
  // non-exist is present by is_default
  bool is_default(char label) {
    return (*this)[static_cast<int>(label)] == default_value;
  }
};

inline std::string label_to_string(const std::vector<char>& all_labels,
                                   const LabelMap& label2type) {
  std::string str;
  for (int a : all_labels) {
    std::stringstream ss;
    ss << label2type[a];
    str += ss.str();
  }
  return str;
}

inline static void ReplaceEllipsis(std::string& s) {  // NOLINT
  size_t pos;
  if ((pos = s.find("...", 0)) != std::string::npos) {
    s.replace(pos, 3, ".");
  }
  // remove all the space in the expression
  while ((pos = s.find(" ", 0)) != std::string::npos) {
    s.replace(pos, 1, "");
  }
}

inline std::vector<char> union_labels(const std::vector<char>& a,
                                      const std::vector<char>& b) {
  LabelMap counter(0);
  std::vector<char> res;
  auto f = [&](char c) {
    if (counter[static_cast<int>(c)] == 0) {
      res.push_back(c);
    }
    counter[static_cast<int>(c)] += 1;
  };
  std::for_each(a.begin(), a.end(), f);
  std::for_each(b.begin(), b.end(), f);
  return res;
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
// Apply transforms to all_labels and get another all_labels
inline std::vector<char> TransformLabelsOrder(
    const std::vector<char>& all_labels,
    const LabelMap& type,
    std::vector<LabelType> new_order) {
  std::vector<char> ret;
  for (auto cnt_type : new_order) {
    std::vector<char> tmp;
    for (int c : all_labels) {
      if (type[c] == cnt_type) tmp.push_back(c);
    }
    ret.insert(ret.end(), tmp.begin(), tmp.end());
  }
  return ret;
}

151 152 153 154 155 156 157 158
inline static void GlobalInfo(const std::vector<std::string>& op_labels,
                              const std::string& right,
                              LabelMap* label2type,
                              std::vector<char>* sorted_labels) {
  std::vector<char> all;
  LabelMap counter(0);
  for (auto& ch : right) {  // char
    int c = ch;
159
    (*label2type)[c] = LabelType::BO;
160 161 162 163 164 165 166 167 168
  }

  for (auto& op : op_labels) {
    for (auto& ch : op) {  // char
      int c = ch;
      if (counter.is_default(c)) {
        all.push_back(ch);
      }
      counter[c] += 1;
169
      if ((*label2type)[c] != LabelType::BO && counter[c] == 2)
170 171 172 173 174
        (*label2type)[c] = LabelType::Contraction;
      else if (counter[c] == 2)
        (*label2type)[c] = LabelType::Batch;
    }
  }
175 176 177 178 179 180

  // BO is represent Free, so we need find the AO.
  for (int c : op_labels[0]) {
    if ((*label2type)[c] == LabelType::BO) (*label2type)[c] = LabelType::AO;
  }

181
  (*label2type)['.'] = LabelType::Batch;
182

183 184 185 186 187 188 189 190 191
  if (sorted_labels->size()) {
    std::set<char> exist(all.begin(), all.end());
    all.clear();
    std::for_each(
        sorted_labels->begin(), sorted_labels->end(), [&exist, &all](char c) {
          if (exist.count(c)) all.push_back(c);
        });
  }

192 193 194 195 196 197 198 199
  *sorted_labels = TransformLabelsOrder(all,
                                        *label2type,
                                        {LabelType::Batch,
                                         LabelType::AO,
                                         LabelType::BO,
                                         LabelType::Contraction,
                                         LabelType::Reduction});

200 201 202 203 204 205
  if (counter[static_cast<int>('.')] > 0) {
    std::vector<char> tmp;
    tmp.push_back('.');
    // push '.' in the front
    *sorted_labels = union_labels(tmp, *sorted_labels);
  }
206 207
  VLOG(5) << "GlobalInfo: sorted_labels after: "
          << paddle::string::join_strings(*sorted_labels, ",");
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
}

inline static void InferLabelShape(const std::vector<std::string>& op_labels,
                                   const std::vector<DDim>& inputs,
                                   LabelMap* labelshape,
                                   std::vector<std::vector<int>>* ellipsis_dims,
                                   std::vector<int>* broadcast_dims) {
  VLOG(5) << "Start InferLabelShape";
  int n_broadcast_dims = 0;
  for (size_t i = 0; i < op_labels.size(); ++i) {
    VLOG(5) << "oplabels: " << op_labels[i];
    int valid_indices = std::count_if(op_labels[i].begin(),
                                      op_labels[i].end(),
                                      [](char c) { return c != '.'; });
    int n_ellipsis = inputs[i].size() - valid_indices;
    VLOG(5) << "valid indices and n_ellipsis: " << valid_indices << " "
            << n_ellipsis;
    ellipsis_dims->at(i).resize(n_ellipsis);
    n_broadcast_dims = std::max(n_broadcast_dims, n_ellipsis);
  }
  VLOG(5) << "InferLabelShape: Broadcast ndims:" << n_broadcast_dims;
  *broadcast_dims = std::vector<int>(n_broadcast_dims, 1);

  for (size_t i = 0; i < op_labels.size(); ++i) {
    auto& op_str = op_labels[i];
    auto& op_dim = inputs[i];
    int dim_ptr = 0;
    for (int c : op_str) {
      if (c == '.') {
        for (auto& v : ellipsis_dims->at(i)) {
          v = op_dim[dim_ptr];
          dim_ptr++;
        }
      } else if (labelshape->is_default(c) || (*labelshape)[c] == -1) {
        (*labelshape)[c] = op_dim[dim_ptr];
        dim_ptr++;
      } else {
        PADDLE_ENFORCE_EQ(
            (*labelshape)[c],
            op_dim[dim_ptr],
            phi::errors::InvalidArgument(
                "Same label have different shapes for label: `%c`", c));
        dim_ptr++;
      }
    }
  }
  for (size_t i = 0; i < op_labels.size(); ++i) {
    VLOG(5) << "InferLabelShape: Ellipsis ndims:"
            << paddle::string::join_strings(ellipsis_dims->at(i), ",");
    int idx = n_broadcast_dims - ellipsis_dims->at(i).size();
    for (auto v : ellipsis_dims->at(i)) {
      PADDLE_ENFORCE_EQ(
          v == 1 || broadcast_dims->at(idx) == 1 ||
              broadcast_dims->at(idx) == v,
          true,
          phi::errors::InvalidArgument(
              "Ellipsis dims can't broadcasts. Please Check you operands."));
      broadcast_dims->at(idx) = std::max(v, broadcast_dims->at(idx));
      idx += 1;
    }
  }
  VLOG(5) << "InferLabelShape: Broadcast dims:"
          << paddle::string::join_strings(*broadcast_dims, ",");
}

inline static void InferLabelPerm(const std::string& op,
                                  int n_broadcast,
                                  LabelMap* label2perm) {
  int cur = 0;
  for (int c : op) {
    (*label2perm)[c] = cur;
    if (c == '.') {
      cur += n_broadcast;
    } else {
      cur += 1;
    }
  }
}

inline static void InferOutputDims(const std::string& right,
                                   const std::vector<int>& broadcast_dims,
                                   const LabelMap& labelshape,
                                   std::vector<int>* output_dims) {
  for (int c : right) {
    if (c == '.') {
      output_dims->insert(
          output_dims->end(), broadcast_dims.begin(), broadcast_dims.end());
    } else {
      output_dims->push_back(labelshape[c]);
    }
  }
}
//
inline static void ParseEinsumEquation(
    const std::string& equation,
    const std::vector<DDim>& inputs,
    LabelMap* labelshape,
    LabelMap* labeltype,
    std::vector<char>* all_labels,
    std::vector<LabelMap>* label2perms,
    std::vector<std::vector<int>>* ellipsis_dims,
    std::vector<int>* broadcast_dims,
    std::vector<int>* output_dims,
    std::string* right) {
  auto results = paddle::string::split_string(equation, "->");
  auto left = results[0];
  ReplaceEllipsis(left);
  *right = results[1].substr(1);
  ReplaceEllipsis(*right);
  auto op_labels = paddle::string::split_string(left, ",");
318 319
  // split_string("i,") -> ["i"], we expect 2 op_labels.
  if (left[left.size() - 1] == ',') op_labels.push_back("");
320 321 322
  std::for_each(op_labels.begin(), op_labels.end(), ReplaceEllipsis);
  GlobalInfo(op_labels, *right, labeltype, all_labels);
  InferLabelShape(op_labels, inputs, labelshape, ellipsis_dims, broadcast_dims);
323 324 325
  VLOG(5) << "Einsum Infershape: right:" << *right;
  VLOG(5) << "Einsum Infershape: left :"
          << paddle::string::join_strings(op_labels, '\n');
326 327 328 329 330
  InferOutputDims(*right, *broadcast_dims, *labelshape, output_dims);
  for (size_t i = 0; i < inputs.size(); ++i) {
    InferLabelPerm(
        op_labels[i], ellipsis_dims->at(i).size(), &((*label2perms)[i]));
  }
331
  VLOG(5) << "Einsum Infershape: end";
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
}

template <typename T>
std::vector<T> GetLabelIndexByType(const std::vector<char>& all_labels,
                                   const LabelMap& type,
                                   const LabelMap& perm,
                                   const std::vector<int>& ellipsis,
                                   LabelType filter) {
  std::vector<T> res;
  for (T c : all_labels) {
    if ((filter == LabelType::ALL_TYPE || type[c] == filter) && perm[c] != -1) {
      if (c == '.') {
        for (size_t i = 0; i < ellipsis.size(); ++i) res.push_back(perm[c] + i);
      } else {
        res.push_back(perm[c]);
      }
    }
  }
  return res;
}

template <typename T>
std::vector<T> GetShapeByType(const std::vector<char>& all_labels,
                              const LabelMap& type,
                              const LabelMap& perm,
                              const LabelMap& label2shape,
                              const std::vector<int>& ellipsis,
359
                              std::set<LabelType> filter) {
360 361
  std::vector<T> res;
  for (T c : all_labels) {
362 363 364
    if ((filter.count(LabelType::ALL_TYPE) ||
         filter.count(LabelType(type[c]))) &&
        perm[c] != -1) {
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
      if (c == '.')
        res.insert(res.end(), ellipsis.begin(), ellipsis.end());
      else
        res.push_back(label2shape[c]);
    }
  }
  return res;
}

template <typename T, typename Context>
DenseTensor PerformReduction(const Context& dev_ctx,
                             const DenseTensor& tensor,
                             const LabelMap& label2perm,
                             const std::vector<char>& all_labels,
                             const std::vector<int>& ellipsis,
                             const LabelMap& label2type) {
  auto indices = GetLabelIndexByType<int64_t>(
      all_labels, label2type, label2perm, ellipsis, LabelType::Reduction);
  VLOG(5) << "call PerformReduction: with axis: "
          << paddle::string::join_strings(indices, ",");
  if (indices.size() == 0) return tensor;
386 387
  return Sum<T, Context>(
      dev_ctx, tensor, phi::IntArray(indices), tensor.dtype(), true);
388 389
}

390 391 392 393 394 395 396
inline bool is_no_need_transpose(const std::vector<int>& axis) {
  for (size_t i = 0; i < axis.size(); ++i) {
    if (i != static_cast<size_t>(axis[i])) return false;
  }
  return true;
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
template <typename T, typename Context>
DenseTensor PerformTranspose(const Context& dev_ctx,
                             const DenseTensor& tensor,
                             const LabelMap& label2perm,
                             const std::vector<char>& all_labels,
                             const std::vector<int>& ellipsis,
                             const LabelMap& label2type) {
  auto axis = GetLabelIndexByType<int>(
      all_labels, label2type, label2perm, ellipsis, LabelType::ALL_TYPE);
  VLOG(5) << "PerformTranspose: " << paddle::string::join_strings(axis, ",");
  if (is_no_need_transpose(axis)) {
    return tensor;
  }
  auto ret = Transpose<T, Context>(dev_ctx, tensor, axis);
  VLOG(5) << "PerformTranspose: do_transpose()";
  return ret;
}

template <typename T, typename Context>
DenseTensor PerformContraction(
    const Context& dev_ctx,
    const DenseTensor& A,
    const DenseTensor& B,
    const std::vector<LabelMap>& label2perm,
    const std::vector<char>& all_labels,
    const LabelMap& label2type,
    const LabelMap& label2shape,
    const std::vector<std::vector<int>>& ellipsis_dims,
425
    const std::vector<int>& broadcast_dims,
426 427
    std::vector<DenseTensor*> cache,
    bool use_cache) {
428 429 430 431 432 433 434
  // Get All the Batches, so perm is
  auto all_valid = LabelMap(1);
  auto recover_dim = GetShapeByType<int>(all_labels,
                                         label2type,
                                         all_valid,
                                         label2shape,
                                         broadcast_dims,
435
                                         {LabelType::Batch});
436 437
  auto preprocess = [&](const DenseTensor& t,
                        const LabelMap& perm,
438 439 440 441 442 443 444 445 446
                        const std::vector<int>& ellipsis,
                        int operand_idx) -> DenseTensor {
    // reshape
    auto frees = GetShapeByType<int>(all_labels,
                                     label2type,
                                     perm,
                                     label2shape,
                                     ellipsis,
                                     {LabelType::AO, LabelType::BO});
447 448 449 450 451
    auto conts = GetShapeByType<int>(all_labels,
                                     label2type,
                                     perm,
                                     label2shape,
                                     ellipsis,
452 453 454 455 456 457 458 459 460 461 462 463 464
                                     {LabelType::Contraction});
    std::vector<char> reordered_all_labels = all_labels;
    if (operand_idx == 1) {
      reordered_all_labels = TransformLabelsOrder(all_labels,
                                                  label2type,
                                                  {LabelType::Batch,
                                                   LabelType::Contraction,
                                                   LabelType::AO,
                                                   LabelType::BO,
                                                   LabelType::Reduction});
    }
    // reduction
    DenseTensor trans_t;
465
    if (use_cache && cache[operand_idx] != nullptr &&
466
        cache[operand_idx]->IsInitialized()) {
467
      trans_t.ShareBufferWith(*(cache[operand_idx]));
468
      VLOG(5) << "Cache Used!";
469 470 471 472 473
    } else {
      auto reduct_t = PerformReduction<T, Context>(
          dev_ctx, t, perm, all_labels, ellipsis, label2type);
      trans_t = PerformTranspose<T, Context>(
          dev_ctx, reduct_t, perm, reordered_all_labels, ellipsis, label2type);
474
      if (cache[operand_idx] != nullptr)
475
        cache[operand_idx]->ShareBufferWith(trans_t);
476 477 478 479 480 481 482
    }
    auto mul_dims = GetShapeByType<int>(all_labels,
                                        label2type,
                                        perm,
                                        label2shape,
                                        ellipsis,
                                        {LabelType::Batch});
483
    recover_dim.insert(recover_dim.end(), frees.begin(), frees.end());
484 485 486 487 488 489 490 491 492 493 494
    if (operand_idx == 0) {
      mul_dims.push_back(std::accumulate(
          frees.begin(), frees.end(), 1, std::multiplies<int>()));
      mul_dims.push_back(std::accumulate(
          conts.begin(), conts.end(), 1, std::multiplies<int>()));
    } else {
      mul_dims.push_back(std::accumulate(
          conts.begin(), conts.end(), 1, std::multiplies<int>()));
      mul_dims.push_back(std::accumulate(
          frees.begin(), frees.end(), 1, std::multiplies<int>()));
    }
495 496 497 498 499
    VLOG(5) << "PerformContraction: mul_dims: "
            << paddle::string::join_strings(mul_dims, ",");
    trans_t.Resize(make_ddim(mul_dims));
    return trans_t;
  };
500 501 502 503

  // Reduction, Reshape and Matmul
  auto trans_a = preprocess(A, label2perm[0], ellipsis_dims[0], 0);
  auto trans_b = preprocess(B, label2perm[1], ellipsis_dims[1], 1);
504
  auto after_contraction =
505
      Matmul<T, Context>(dev_ctx, trans_a, trans_b, false, false);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
  VLOG(5) << "PerformContraction: recover_dim: "
          << paddle::string::join_strings(recover_dim, ",");
  after_contraction.Resize(make_ddim(recover_dim));
  return after_contraction;
}

template <typename T, typename Context>
void TransposeToOutput(const Context& dev_ctx,
                       const DenseTensor& to_trans,
                       const std::string& right,
                       const std::vector<char>& all_labels,
                       int n_broadcast_dims,
                       DenseTensor* output) {
  std::vector<int> axis;
  int offset = 0;
  if (std::find(all_labels.begin(), all_labels.end(), '.') !=
      all_labels.end()) {
    offset = n_broadcast_dims - 1;
  }
  for (char c : right) {
    if (c == '.') {
      for (int i = 0; i < n_broadcast_dims; ++i) axis.push_back(i);
    } else {
      auto it = std::find(all_labels.begin(), all_labels.end(), c);
      PADDLE_ENFORCE_NE(it,
                        all_labels.end(),
                        phi::errors::InvalidArgument("Must in all_labels."));
      axis.push_back(it - all_labels.begin() + offset);
    }
  }
536 537 538 539
  if (is_no_need_transpose(axis)) {
    output->ShareBufferWith(to_trans);
    return;
  }
540 541
  VLOG(5) << "call TransposeToOutput: with axis: "
          << paddle::string::join_strings(axis, ",");
542
  TransposeKernel<T, Context>(dev_ctx, to_trans, axis, output);
543 544 545
}

template <typename T, typename Context>
546
void EinsumKernelImpl(const Context& dev_ctx,
547
                      const std::vector<char>& forward_all_labels,
548 549 550
                      const std::vector<const DenseTensor*>& inputs,
                      const std::string& equation,
                      DenseTensor* out,
551 552
                      std::vector<DenseTensor*> cache,
                      bool is_forward = true) {
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
  ValidationCheck(equation);
  // collect the following informations to prepare einsum.
  LabelMap labelshape(0);
  LabelMap labeltype(LabelType::Reduction);
  std::vector<LabelMap> label2perms(inputs.size(), LabelMap(-1));
  std::vector<char> all_labels;  // order: ABO, AO, BO, AB, Reduce
  std::vector<std::vector<int>> ellipsis_dims(2);
  std::vector<int> broadcast_dims;
  std::vector<int> output_dims;

  std::vector<DDim> input_dims;
  for (auto& i : inputs) {
    input_dims.push_back(i->dims());
  }
  std::string right;
568 569 570
  if (!is_forward) {
    all_labels = forward_all_labels;
  }
571 572 573 574 575 576 577 578 579 580 581 582 583 584
  ParseEinsumEquation(equation,
                      input_dims,
                      &labelshape,
                      &labeltype,
                      &all_labels,
                      &label2perms,
                      &ellipsis_dims,
                      &broadcast_dims,
                      &output_dims,
                      &right);
  out->Resize(make_ddim(output_dims));
  if (inputs.size() == 2) {
    auto& A = inputs[0];
    auto& B = inputs[1];
585
    // Reduction and Contract Procedure
586
    auto after_contraction = PerformContraction<T, Context>(dev_ctx,
587 588
                                                            *A,
                                                            *B,
589 590 591 592 593
                                                            label2perms,
                                                            all_labels,
                                                            labeltype,
                                                            labelshape,
                                                            ellipsis_dims,
594
                                                            broadcast_dims,
595 596
                                                            cache,
                                                            !is_forward);
597 598 599 600 601 602 603 604
    TransposeToOutput<T, Context>(dev_ctx,
                                  after_contraction,
                                  right,
                                  all_labels,
                                  broadcast_dims.size(),
                                  out);
    // Reshape Procedure
  } else if (inputs.size() == 1) {
605 606 607 608 609
    if (cache[0] != nullptr) {  // For compatibility, may be cache is nullptr if
                                // loading the program from v2.3.0
      (*cache[0]) = *(inputs[0]);  // ShareBuffer for backward, because backward
                                   // we can only see cached tensor.
    }
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
    auto reduce_A = PerformReduction<T, Context>(dev_ctx,
                                                 *inputs[0],
                                                 label2perms[0],
                                                 all_labels,
                                                 ellipsis_dims[0],
                                                 labeltype);
    std::vector<char> right_labels;
    for (auto c : right) right_labels.push_back(c);
    right_labels = union_labels(right_labels, all_labels);
    *out = PerformTranspose<T, Context>(dev_ctx,
                                        reduce_A,
                                        label2perms[0],
                                        right_labels,
                                        broadcast_dims,
                                        labeltype);
    out->Resize(make_ddim(output_dims));
  } else {
    PADDLE_THROW(phi::errors::InvalidArgument(
        "EinsumOp kernel only support len(operands) between (0, 2]. Use "
        "opt_einsum first to convert multi-variable to binary-variable."));
  }
}

633 634 635 636 637
template <typename T, typename Context>
void EinsumKernelRaw(const Context& dev_ctx,
                     const std::vector<const DenseTensor*>& inputs,
                     const std::string& equation,
                     DenseTensor* out,
638 639
                     std::vector<DenseTensor*> cache,
                     std::vector<DenseTensor*> xshape) {
640 641 642 643 644 645 646 647 648 649 650 651
  std::vector<char> tmp;
  // for the sake of compatibility, we may load and run v2.3 EinsumOp. Output
  // may have nullptr and the cache.size() is not equal to inputs.size(). refer
  // to BuildPhiKernelContext for details.
  int diff = inputs.size() - cache.size();
  for (int i = 0; i < diff; ++i) {
    cache.push_back(nullptr);
  }
  EinsumKernelImpl<T, Context>(
      dev_ctx, tmp, inputs, equation, out, cache, /*forward=*/true);
}

652 653 654 655 656
template <typename T, typename Context>
void EinsumKernel(const Context& dev_ctx,
                  const std::vector<const DenseTensor*>& inputs,
                  const std::string& equation,
                  DenseTensor* out) {
657
  std::vector<char> place_holder;
658 659 660
  std::vector<DenseTensor*> cache_tensor(
      inputs.size());  // set empty; TA, TB, TdC
  for (size_t i = 0; i < inputs.size(); ++i) {
661
    cache_tensor[i] = nullptr;
662
  }
663 664
  EinsumKernelImpl<T, Context>(
      dev_ctx, place_holder, inputs, equation, out, cache_tensor, true);
665 666
}

667
}  // namespace phi