hierarchical_sigmoid_op.h 7.4 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
W
weixing02 已提交
16 17 18
#include <iostream>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
19
#include "paddle/fluid/framework/selected_rows.h"
W
weixing02 已提交
20 21 22 23
#include "paddle/fluid/operators/clip_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/matrix_bit_code.h"
#include "paddle/fluid/platform/transform.h"
Y
Yancey1989 已提交
24 25 26
namespace paddle {
namespace operators {

Y
Yancey1989 已提交
27 28 29
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
Y
Yancey1989 已提交
30
using platform::Transform;
Y
Yancey1989 已提交
31

Y
Yancey1989 已提交
32
template <typename DeviceContext, typename T>
Y
Yancey1989 已提交
33 34
class HierarchicalSigmoidOpKernel : public framework::OpKernel<T> {
 public:
Y
Yancey1989 已提交
35
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
Yancey1989 已提交
36
    auto* in = ctx.Input<framework::Tensor>("X");
Y
Yancey1989 已提交
37
    auto* w = ctx.Input<framework::Tensor>("W");
38 39
    auto* path = ctx.Input<framework::Tensor>("PTable");
    auto* code = ctx.Input<framework::Tensor>("PCode");
W
weixing02 已提交
40
    auto* label = ctx.Input<framework::Tensor>("Label");
Y
Yancey1989 已提交
41
    auto* bias = ctx.Input<framework::Tensor>("Bias");
Y
Yancey1989 已提交
42
    auto* out = ctx.Output<framework::Tensor>("Out");
W
weixing02 已提交
43
    auto* pre_out = ctx.Output<framework::Tensor>("PreOut");
Y
Yancey1989 已提交
44
    size_t num_classes = static_cast<size_t>(ctx.Attr<int>("num_classes"));
45 46 47 48 49 50 51 52
    bool is_custom = false;
    if (path) {
      is_custom = true;
    } else {
      is_custom = false;
    }
    int64_t code_length =
        path ? path->dims()[1] : math::FindLastSet(num_classes - 1);
Y
Yancey1989 已提交
53 54
    int64_t batch_size = in->dims()[0];
    framework::Tensor sum;
W
weixing02 已提交
55
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
G
guosheng 已提交
56
    auto* pre_out_data = pre_out->mutable_data<T>(
Y
Yancey1989 已提交
57
        framework::make_ddim({batch_size, code_length}), ctx.GetPlace());
W
weixing02 已提交
58
    auto pre_out_mat = EigenMatrix<T>::From(*pre_out);
G
guosheng 已提交
59 60
    // Not all class(leaf) nodes' path lengths equal code_length, thus init as
    // 0s can avoid out of path's loss.
61
    math::SetConstant<DeviceContext, T> zero;
W
weixing02 已提交
62
    zero(dev_ctx, pre_out, static_cast<T>(0.0));
Y
Yancey1989 已提交
63 64
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
    math::RowwiseSum<DeviceContext, T> row_sum;
65 66 67 68 69 70 71 72 73

    std::unique_ptr<math::MatrixBitCodeFunctor<T>> bit_code;
    if (!is_custom) {
      bit_code.reset(new math::MatrixBitCodeFunctor<T>(num_classes,
                                                       label->data<int64_t>()));
    } else {
      bit_code.reset(new math::MatrixBitCodeFunctor<T>(path, code,
                                                       label->data<int64_t>()));
    }
Y
Yancey1989 已提交
74

Y
Yancey1989 已提交
75 76
    std::vector<int64_t> sum_dims({batch_size, 1UL});
    sum.mutable_data<T>(framework::make_ddim(sum_dims), ctx.GetPlace());
Y
Yancey1989 已提交
77
    auto sum_mat = EigenMatrix<T>::From(sum);
Y
Yancey1989 已提交
78
    out->mutable_data<T>(ctx.GetPlace());
Y
Yancey1989 已提交
79
    auto out_mat = framework::EigenVector<T>::Flatten(*out);
Y
Yancey1989 已提交
80
    if (bias) {
81
      bit_code->Add(pre_out, *bias);
Y
Yancey1989 已提交
82
    }
83
    bit_code->Mul(pre_out, *w, *in);
G
guosheng 已提交
84
    // clip to [-40, 40]
Y
Yancey1989 已提交
85 86
    Transform<DeviceContext> trans;
    trans(ctx.template device_context<DeviceContext>(), pre_out_data,
W
weixing02 已提交
87
          pre_out_data + pre_out->numel(), pre_out_data,
Y
Yancey1989 已提交
88
          ClipFunctor<T>(static_cast<T>(-40.0), static_cast<T>(40.0)));
J
JiabinYang 已提交
89
    pre_out_mat = -1 * pre_out_mat;
90
    bit_code->Sum(*pre_out, out, static_cast<T>(-1));
G
guosheng 已提交
91
    // use softrelu to calculate cross entropy
Y
Yancey1989 已提交
92
    pre_out_mat.device(place) = (static_cast<T>(1.0) + pre_out_mat.exp()).log();
W
weixing02 已提交
93
    row_sum(dev_ctx, *pre_out, &sum);
94 95 96 97
    // TODO(guosheng): Subtract the out of path's loss, since not all
    // class(leaf) nodes' path lengths equal code_length. But it won't break the
    // gradient check since both have the out of path's loss and will cancel out
    // each other.
Y
Yancey1989 已提交
98
    out_mat.device(place) = sum_mat + out_mat;
Y
Yancey1989 已提交
99
  }
Y
Yancey1989 已提交
100 101
};

Y
Yancey1989 已提交
102
template <typename DeviceContext, typename T>
Y
Yancey1989 已提交
103 104
class HierarchicalSigmoidGradOpKernel : public framework::OpKernel<T> {
 public:
Y
Yancey1989 已提交
105
  void Compute(const framework::ExecutionContext& ctx) const override {
Y
Yancey1989 已提交
106
    auto* in = ctx.Input<framework::Tensor>("X");
W
weixing02 已提交
107
    auto* w = ctx.Input<framework::Tensor>("W");
108 109
    auto* path = ctx.Input<framework::Tensor>("PTable");
    auto* code = ctx.Input<framework::Tensor>("PCode");
Y
Yancey1989 已提交
110
    auto* in_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
W
weixing02 已提交
111 112 113
    auto* w_grad = ctx.Output<framework::Tensor>(framework::GradVarName("W"));
    auto* bias_grad =
        ctx.Output<framework::Tensor>(framework::GradVarName("Bias"));
W
weixing02 已提交
114
    auto* label = ctx.Input<framework::Tensor>("Label");
W
weixing02 已提交
115 116 117
    auto* pre_out = ctx.Input<framework::Tensor>("PreOut");
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
118 119 120 121 122 123 124 125 126
    framework::Tensor pre_out_grad;

    pre_out_grad.mutable_data<T>(pre_out->dims(), ctx.GetPlace());
    in_grad->mutable_data<T>(ctx.GetPlace());
    w_grad->mutable_data<T>(ctx.GetPlace());
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    math::SetConstant<DeviceContext, T> zero;
    zero(dev_ctx, in_grad, static_cast<T>(0.0));
    zero(dev_ctx, w_grad, static_cast<T>(0.0));
W
weixing02 已提交
127

Y
Yancey1989 已提交
128
    size_t num_classes = static_cast<size_t>(ctx.Attr<int>("num_classes"));
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

    bool is_custom = false;
    if (path) {
      is_custom = true;
    } else {
      is_custom = false;
    }

    std::unique_ptr<math::MatrixBitCodeFunctor<T>> bit_code;
    if (!is_custom) {
      bit_code.reset(new math::MatrixBitCodeFunctor<T>(num_classes,
                                                       label->data<int64_t>()));
    } else {
      bit_code.reset(new math::MatrixBitCodeFunctor<T>(path, code,
                                                       label->data<int64_t>()));
    }
145

Y
Yancey1989 已提交
146
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
W
weixing02 已提交
147 148
    auto pre_out_mat = EigenMatrix<T>::From(*pre_out);
    auto pre_out_grad_mat = EigenMatrix<T>::From(pre_out_grad);
W
weixing02 已提交
149
    auto out_grad_mat = EigenMatrix<T>::From(*out_grad);
J
JiabinYang 已提交
150

151 152 153 154 155
    Eigen::array<int, 2> bcast({{1, static_cast<int>(pre_out_grad.dims()[1])}});

    // softrelu derivative
    pre_out_grad_mat.device(place) =
        static_cast<T>(1.0) - static_cast<T>(1.0) / pre_out_mat.exp();
156
    bit_code->Sub(&pre_out_grad);  // the gradient of clip(w * x + b)
W
weixing02 已提交
157
    pre_out_grad_mat.device(place) =
158
        pre_out_grad_mat * out_grad_mat.broadcast(bcast);
G
guosheng 已提交
159 160
    // TODO(guosheng): multiply pre_out_grad with subgradient of clipping to
    // be consistent with the clipping in forward.
W
weixing02 已提交
161 162
    if (bias_grad) {
      bias_grad->mutable_data<T>(ctx.GetPlace());
163
      zero(dev_ctx, bias_grad, static_cast<T>(0.0));
164
      bit_code->AddGrad(pre_out_grad, bias_grad);
J
JiabinYang 已提交
165 166
      auto bias_grad_mat = EigenMatrix<T>::From(*bias_grad);
      bias_grad_mat = -1 * bias_grad_mat;
Y
Yancey1989 已提交
167
    }
168 169
    bit_code->MulGradWeight(pre_out_grad, w_grad, *in);
    bit_code->MulGradError(pre_out_grad, *w, in_grad);
J
JiabinYang 已提交
170 171 172 173 174
    auto w_grad_mat = EigenMatrix<T>::From(*w_grad);
    auto in_grad_mat = EigenMatrix<T>::From(*in_grad);

    w_grad_mat = -1 * w_grad_mat;
    in_grad_mat = -1 * in_grad_mat;
Y
Yancey1989 已提交
175
  }
Y
Yancey1989 已提交
176 177 178 179
};

}  // namespace operators
}  // namespace paddle