conv_cudnn_op.cu.cc 16.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

Y
Yi Wang 已提交
15 16 17 18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cudnn_helper.h"
K
Kexin Zhao 已提交
21
#include "paddle/fluid/platform/float16.h"
武毅 已提交
22

Y
Yu Yang 已提交
23
DEFINE_bool(cudnn_deterministic, false,
C
chengduoZH 已提交
24 25
            "Whether allow using an autotuning algorithm for convolution "
            "operator. The autotuning algorithm may be non-deterministic. If "
Y
Yu Yang 已提交
26
            "true, the algorithm is deterministic.");
C
chengduoZH 已提交
27

武毅 已提交
28 29 30 31 32 33 34 35
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
K
update  
Kexin Zhao 已提交
36 37
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
武毅 已提交
38

Q
qiaolongfei 已提交
39 40
static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES =
    static_cast<size_t>(1024) * 1024 * 1024;
武毅 已提交
41

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
template <typename T, typename DeviceContext>
// bool EnableFp16(const T& dummy, const DeviceContext& dev_ctx,
bool EnableFp16(const DeviceContext& dev_ctx,
                cudnnConvolutionDescriptor_t cudnn_conv_desc) {
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
  // Tensor core is supported since the volta GPU and
  // is only enabled when input and filter data are float16
  if (dev_ctx.GetComputeCapability() >= 70 &&
      std::type_index(typeid(T)) ==
          std::type_index(typeid(platform::float16))) {
    PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
        cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
    return true;
  } else {
    PADDLE_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
        cudnn_conv_desc, CUDNN_DEFAULT_MATH));
  }
#endif
  return false;
}

武毅 已提交
63
template <typename T>
64
class CUDNNConvOpKernel : public framework::OpKernel<T> {
武毅 已提交
65 66 67
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
68
                   "It must use CUDAPlace.");
武毅 已提交
69 70 71 72 73 74 75 76
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
77 78
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
武毅 已提交
79 80 81 82 83 84 85 86 87 88 89

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
90 91 92 93 94 95 96
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
97
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
98 99 100
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
101
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
102 103 104
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
105

C
chengduoZH 已提交
106 107 108 109 110 111
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
112 113

    int input_channels = input->dims()[1];
武毅 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }
    int output_channels = filter->dims()[0];
    int output_height, output_width, output_depth;
    if (output->dims().size() == 5) {
      output_depth = output->dims()[2];
      output_height = output->dims()[3];
      output_width = output->dims()[4];
    } else {
      output_depth = 1;
      output_height = output->dims()[2];
      output_width = output->dims()[3];
    }
武毅 已提交
135

武毅 已提交
136 137
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
武毅 已提交
138
    int group_offset_out =
武毅 已提交
139
        output_channels / groups * output_height * output_width * output_depth;
武毅 已提交
140 141 142 143 144 145 146 147 148 149
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn conv workspace ---------------------
    void* cudnn_workspace = nullptr;
    size_t workspace_size_in_bytes;  // final workspace to allocate.
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }
    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
Q
QI JUN 已提交
150 151
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
152
    if (EnableFp16<T>(dev_ctx, cudnn_conv_desc)) {
K
Kexin Zhao 已提交
153 154
      algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
    } else {
155 156 157 158
      PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
          handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
          workspace_size_limit, &algo));
K
Kexin Zhao 已提交
159 160
    }

武毅 已提交
161
    // get workspace size able to allocate
W
Wu Yi 已提交
162
    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
武毅 已提交
163 164
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, algo, &workspace_size_in_bytes));
K
Kexin Zhao 已提交
165 166 167 168 169
    // It is possible for float16 on Volta GPU to allocate more memory than
    // the limit because the algo is overrided to use tensor core.
    PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit,
                      "workspace_size to be allocated exceeds the limit");

武毅 已提交
170
    // Allocate on GPU memory
D
dzhwinter 已提交
171
    platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
武毅 已提交
172 173
    cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
    // ------------------- cudnn conv forward ---------------------
K
update  
Kexin Zhao 已提交
174
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
175
    for (int i = 0; i < groups; i++) {
W
Wu Yi 已提交
176
      CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
武毅 已提交
177 178 179 180 181 182 183 184 185 186 187
          handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
          cudnn_filter_desc, filter_data + i * group_offset_filter,
          cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes,
          &beta, cudnn_output_desc, output_data + i * group_offset_out));
    }
    // Release the cudnn workspace
    paddle::memory::Free(gpu, cudnn_workspace);
  }
};

template <typename T>
188
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
武毅 已提交
189 190 191
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
192
                   "It must use CUDAPlace.");
武毅 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
207 208
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
武毅 已提交
209 210 211 212 213 214 215 216 217

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_grad_desc;

    ScopedFilterDescriptor filter_desc;
    ScopedFilterDescriptor filter_grad_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
218 219 220 221 222 223 224
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
225
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
226 227 228
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
229
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
230 231 232
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
233

C
chengduoZH 已提交
234 235
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
武毅 已提交
236
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
C
chengduoZH 已提交
237 238 239 240
        output_grad_desc.descriptor<T>(
            layout, framework::vectorize2int(output_grad->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
241 242

    int input_channels = input->dims()[1];
武毅 已提交
243 244 245 246 247 248 249 250 251 252 253
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }

武毅 已提交
254
    int output_grad_channels = filter->dims()[0];
武毅 已提交
255 256 257 258 259 260 261 262 263 264
    int output_grad_height, output_grad_width, output_grad_depth;
    if (input->dims().size() == 5) {
      output_grad_depth = output_grad->dims()[2];
      output_grad_height = output_grad->dims()[3];
      output_grad_width = output_grad->dims()[4];
    } else {
      output_grad_depth = 1;
      output_grad_height = output_grad->dims()[2];
      output_grad_width = output_grad->dims()[3];
    }
武毅 已提交
265

武毅 已提交
266 267 268 269
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
    int group_offset_out = output_grad_channels / groups * output_grad_height *
                           output_grad_width * output_grad_depth;
武毅 已提交
270 271 272 273 274 275 276 277 278 279
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn backward algorithm ---------------------
    cudnnConvolutionBwdDataAlgo_t data_algo;
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
    size_t workspace_size_in_bytes = 0, tmp_size = 0;
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }

Q
QI JUN 已提交
280 281
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
武毅 已提交
282
    if (input_grad) {
Y
Yu Yang 已提交
283
      if (!FLAGS_cudnn_deterministic) {
W
Wu Yi 已提交
284
        CUDNN_ENFORCE(
C
chengduoZH 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                handle, cudnn_filter_desc,
                // dyDesc: Handle to the previously initialized input
                // differential
                // tensor descriptor.
                cudnn_output_grad_desc, cudnn_conv_desc,
                // dxDesc: Handle to the previously initialized output tensor
                // descriptor.
                cudnn_input_desc,
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &data_algo));
      } else {
        data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      }
299 300 301
      if (EnableFp16<T>(dev_ctx, cudnn_conv_desc)) {
        data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      }
C
chengduoZH 已提交
302

W
Wu Yi 已提交
303
      CUDNN_ENFORCE(
武毅 已提交
304 305
          platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
              handle, cudnn_filter_desc, cudnn_output_grad_desc,
武毅 已提交
306
              cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
武毅 已提交
307 308 309 310
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }

    if (filter_grad) {
Y
Yu Yang 已提交
311
      if (!FLAGS_cudnn_deterministic) {
W
Wu Yi 已提交
312
        CUDNN_ENFORCE(
C
chengduoZH 已提交
313 314 315 316 317 318 319 320
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                handle, cudnn_input_desc, cudnn_output_grad_desc,
                cudnn_conv_desc, cudnn_filter_desc,
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &filter_algo));
      } else {
        filter_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
      }
321 322 323
      if (EnableFp16<T>(dev_ctx, cudnn_conv_desc)) {
        filter_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
      }
武毅 已提交
324

W
Wu Yi 已提交
325
      CUDNN_ENFORCE(
武毅 已提交
326 327 328 329 330 331 332 333
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
              cudnn_filter_desc, filter_algo, &tmp_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
    // ------------------- cudnn conv workspace ---------------------
    // Already on GPU
    void* cudnn_workspace = nullptr;
D
dzhwinter 已提交
334
    platform::CUDAPlace gpu = boost::get<platform::CUDAPlace>(ctx.GetPlace());
武毅 已提交
335 336
    cudnn_workspace = paddle::memory::Alloc(gpu, workspace_size_in_bytes);
    // ------------------- cudnn conv backward data ---------------------
K
update  
Kexin Zhao 已提交
337
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
338 339
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
340 341
      // Because beta is zero, it is unnecessary to reset input_grad.

武毅 已提交
342
      for (int i = 0; i < groups; i++) {
W
Wu Yi 已提交
343
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
武毅 已提交
344 345 346
            handle, &alpha, cudnn_filter_desc,
            filter_data + i * group_offset_filter, cudnn_output_grad_desc,
            output_grad_data + i * group_offset_out, cudnn_conv_desc, data_algo,
武毅 已提交
347 348
            cudnn_workspace, workspace_size_in_bytes, &beta, cudnn_input_desc,
            input_grad_data + i * group_offset_in));
武毅 已提交
349 350 351 352 353
      }
    }
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
354
      // Because beta is zero, it is unnecessary to reset filter_grad.
武毅 已提交
355
      for (int i = 0; i < groups; i++) {
W
Wu Yi 已提交
356
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
武毅 已提交
357 358 359
            handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
            cudnn_output_grad_desc, output_grad_data + i * group_offset_out,
            cudnn_conv_desc, filter_algo, cudnn_workspace,
武毅 已提交
360
            workspace_size_in_bytes, &beta, cudnn_filter_desc,
武毅 已提交
361 362 363 364 365 366 367 368 369 370 371
            filter_grad_data + i * group_offset_filter));
      }
    }
    // Release the cudnn workspace
    paddle::memory::Free(gpu, cudnn_workspace);
  }
};

}  // namespace operators
}  // namespace paddle

K
Kexin Zhao 已提交
372 373
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
374
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
375
                   paddle::operators::CUDNNConvOpKernel<double>,
K
Kexin Zhao 已提交
376
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
377
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
378
                   paddle::operators::CUDNNConvGradOpKernel<float>,
379 380
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
381

K
Kexin Zhao 已提交
382
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
383
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
384 385
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
386
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
387
                   paddle::operators::CUDNNConvGradOpKernel<float>,
388 389
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>)