elementwise_min_op.cu 3.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
F
fengjiayi 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_min_op.h"
F
fengjiayi 已提交
16

17 18 19 20 21 22 23 24 25 26
namespace paddle {
namespace operators {

template <typename T>
class ElementwiseMinKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    std::vector<const framework::Tensor*> ins;
    std::vector<framework::Tensor*> outs;
27
    const auto& dev_ctx =
28 29 30
        ctx.template device_context<platform::CUDADeviceContext>();

    int axis = PackTensorsIntoVector<T>(ctx, &ins, &outs);
31 32 33
    paddle::operators::LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T,
                                                   T>(dev_ctx, ins, &outs, axis,
                                                      MinFunctor<T>());
34 35 36
  }
};

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
ElementwiseMinGrad(const framework::ExecutionContext& ctx,
                   const framework::Tensor* x, const framework::Tensor* y,
                   const framework::Tensor* out, const framework::Tensor* dout,
                   framework::Tensor* dx, framework::Tensor* dy) {
  int axis = ctx.Attr<int>("axis");
  const auto& dev_ctx =
      ctx.template device_context<platform::CUDADeviceContext>();
  const auto place = ctx.GetPlace();
  if (dx != nullptr && dy != nullptr) {
    std::vector<const framework::Tensor*> ins = {x, y, dout};
    GetGradXAndYOut<ElementwiseType::kTernary, T>(
        dev_ctx, place, axis, ins, dout, dx, dy, MinGradXYFunctor<T, T>());
  } else if (dx != nullptr && dy == nullptr) {
    std::vector<const framework::Tensor*> ins = {x, y, dout};
    GetGradXOrYOut<ElementwiseType::kTernary, T>(
        dev_ctx, place, axis, ins, dout, dx, MinGradXFunctor<T>());
  } else if (dx == nullptr && dy != nullptr) {
    std::vector<const framework::Tensor*> ins = {x, y, dout};
    GetGradXOrYOut<ElementwiseType::kTernary, T>(
        dev_ctx, place, axis, ins, dout, dy, MinGradYFunctor<T>());
  }
}

63 64 65
}  // namespace operators
}  // namespace paddle

66 67
namespace ops = paddle::operators;

F
fengjiayi 已提交
68 69
REGISTER_OP_CUDA_KERNEL(
    elementwise_min,
S
sneaxiy 已提交
70 71
    ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext,
                              paddle::platform::float16>,
F
fengjiayi 已提交
72 73 74 75 76 77
    ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, float>,
    ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, int>,
    ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
    elementwise_min_grad,
S
sneaxiy 已提交
78 79
    ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext,
                                  paddle::platform::float16>,
F
fengjiayi 已提交
80 81 82 83 84
    ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext, int>,
    ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext,
                                  int64_t>);