tensor.py 25.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
from six.moves import reduce
Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .layer_function_generator import templatedoc
X
xuwei06 已提交
24
import numpy
Y
Yu Yang 已提交
25 26

__all__ = [
W
whs 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    'create_tensor',
    'create_parameter',
    'create_global_var',
    'cast',
    'tensor_array_to_tensor',
    'concat',
    'sums',
    'assign',
    'fill_constant_batch_size_like',
    'fill_constant',
    'argmin',
    'argmax',
    'argsort',
    'ones',
    'zeros',
    'reverse',
    'has_inf',
    'has_nan',
    'isfinite',
    'range',
Y
Yu Yang 已提交
47 48 49
]


X
xuwei06 已提交
50
def create_tensor(dtype, name=None, persistable=False):
51
    """
Q
update  
qiaolongfei 已提交
52
    Create an variable, which will hold a LoDTensor with data type dtype.
53 54

    Args:
Q
update  
qiaolongfei 已提交
55
        dtype(string): 'float32'|'int32'|..., the data type of the
56
            created tensor.
Q
update  
qiaolongfei 已提交
57
        name(string): The name of the created tensor, if not set,
58
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
59
        persistable(bool): Set the persistable flag of the create tensor.
60 61 62 63 64 65 66 67 68

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
69
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
70 71
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
72 73


74 75
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
76
                     name=None,
77 78 79 80
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
81 82 83 84 85 86
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

87 88 89 90 91 92 93 94 95 96 97
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
98 99 100 101 102 103
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
104
    """
Q
Qiao Longfei 已提交
105
    helper = LayerHelper("create_parameter", **locals())
106
    if attr is None:
X
xuwei06 已提交
107
        attr = ParamAttr(name=name)
108 109 110 111
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


112 113 114 115 116 117 118
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
X
Xin Pan 已提交
119
    Create a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
120

121 122
    Args:
        shape(list[int]): shape of the variable
M
minqiyang 已提交
123
        value(float): the value of the variable. The new created
F
fengjiayi 已提交
124 125
                      variable will be filled with it.
        dtype(string): data type of the variable
M
minqiyang 已提交
126
        persistable(bool): if this variable is persistable.
F
fengjiayi 已提交
127
                           Default: False
M
minqiyang 已提交
128
        force_cpu(bool): force this variable to be on CPU.
F
fengjiayi 已提交
129
                         Default: False
M
minqiyang 已提交
130 131
        name(str|None): The name of the variable. If set to None the variable
                        name will be generated automatically.
F
fengjiayi 已提交
132
                        Default: None
133 134 135

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
136 137 138 139

    Examples:
        .. code-block:: python

M
minqiyang 已提交
140
            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32',
F
fengjiayi 已提交
141
                                 persistable=True, force_cpu=True, name='new_var')
142
    """
Q
Qiao Longfei 已提交
143 144
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
145 146 147 148 149
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
150 151 152
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
153

Q
Qiao Longfei 已提交
154 155 156
    return var


157
def cast(x, dtype):
Y
Yu Yang 已提交
158
    """
M
minqiyang 已提交
159
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts
T
tensor-tang 已提交
160 161
    it to the output with :attr:`dtype`. It's meaningless if the output
    dtype equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
162 163 164 165 166 167 168 169 170 171

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
172

Y
Yibing Liu 已提交
173 174
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
175 176
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
177
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
178 179 180 181 182 183 184 185 186
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


187
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
188
    """
189 190 191
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
192
    and returns that as the output.
193 194 195 196

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
197 198
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
199 200 201 202 203 204

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
205

F
fengjiayi 已提交
206
           out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
207 208
    """
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
209
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
210 211 212 213 214 215 216 217
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


L
li099 已提交
218 219 220 221 222 223
def tensor_array_to_tensor(input, axis=1, name=None):
    """
    This function concatenates the input LodTensorArray along the axis mentioned
    and returns that as the output.

    A simple example as below:
M
minqiyang 已提交
224

L
li099 已提交
225
    .. code-block:: text
M
minqiyang 已提交
226

L
li099 已提交
227 228 229 230 231 232 233 234
        Given:

        input.data = {[[0.6, 0.1, 0.3],
                       [0.5, 0.3, 0.2]],
                      [[1.3],
                       [1.8]],
                      [[2.3, 2.1],
                       [2.5, 2.4]]}
M
minqiyang 已提交
235

L
li099 已提交
236
        axis = 1
M
minqiyang 已提交
237

L
li099 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        Then:

        output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                       [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

        output_index.data = [3, 1, 2]

    Args:
        input(list): Input LodTensorArray
        axis(int): Integer axis along which the tensors will be concatenated
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation
        Variable: The input LodTensorArray items' dims along the axis

    Examples:
        .. code-block:: python

           output, output_index = fluid.layers.tensor_array_to_tensor(input=tensor_array)
    """
L
li099 已提交
260
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
261 262 263
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
264
        type='tensor_array_to_tensor',
L
li099 已提交
265 266 267 268 269 270 271
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
        attrs={'axis': axis})
    return out, out_index


272
def sums(input, out=None):
F
fengjiayi 已提交
273 274
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
275 276 277 278 279
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
280
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
281
                             Default: None
K
kavyasrinet 已提交
282 283

    Returns:
F
fengjiayi 已提交
284
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
285 286

    Examples:
F
fengjiayi 已提交
287
        .. code-block:: python
K
kavyasrinet 已提交
288 289 290 291 292 293

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
294 295
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
296
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
297 298 299
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
300 301
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
302 303 304 305 306
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
307 308 309
    return out


F
fengjiayi 已提交
310
def assign(input, output=None):
311 312 313 314 315 316
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
317
        input(Variable|numpy.ndarray): The source variable
F
fengjiayi 已提交
318
        output(Variable|None): The destination variable
319 320 321 322 323 324

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
325

326 327 328 329
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
330
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
331
    if output is None:
X
Xin Pan 已提交
332
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
xuwei06 已提交
333 334
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
335
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
336 337
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
338
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
339
            value_name = "fp32_values"
340
            values = [float(v) for v in input.flat]
341
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
342
            value_name = "int32_values"
343
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
344 345
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
346 347 348
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
349 350 351 352 353 354 355

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
356
                value_name: values
X
xuwei06 已提交
357 358 359 360
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
361 362 363
    return output


Q
QI JUN 已提交
364
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
365
    """
366 367
    **fill_constant**

368 369
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
370

371
    The attribute `stop_gradient` of the created tensor is set to True.
372 373

    Args:
374
        shape(tuple|list|None): Shape of the output tensor.
375
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
376 377
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
378
        force_cpu(True|False): data should be on CPU if set true.
379 380

    Returns:
381
        Variable: The tensor variable storing the output.
382 383 384 385 386

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
387
    """
388

Y
Yu Yang 已提交
389 390
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
X
Xin Pan 已提交
391
        out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
392 393 394 395
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
396 397 398 399
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
400
            'force_cpu': force_cpu or force_init_on_cpu()
M
minqiyang 已提交
401 402
        },
        stop_gradient=True)
Y
Yu Yang 已提交
403 404 405 406
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
407
@templatedoc()
Y
Yu Yang 已提交
408 409 410 411 412
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
413
                                  output_dim_idx=0):
414
    """
Y
yuyang18 已提交
415
    ${comment}
416 417 418 419

    It also sets *stop_gradient* to True.

    Args:
Y
yuyang18 已提交
420
        input(${input_type}): ${input_comment}.
421

Y
yuyang18 已提交
422
        shape(${shape_type}): ${shape_comment}.
423

Y
yuyang18 已提交
424 425 426
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
427

Y
yuyang18 已提交
428 429 430 431 432
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
433
        ${out_comment}.
H
haowang101779990 已提交
434 435 436 437 438 439 440 441

    Examples:

        .. code-block:: python

             data = fluid.layers.fill_constant_batch_size_like(
                         input=like, shape=[1], value=0, dtype='int64')

442
    """
Y
Yu Yang 已提交
443
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
444
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
460 461 462 463
def argmin(x, axis=0):
    """
    **argmin**

464
    This function computes the indices of the min elements
S
sneaxiy 已提交
465 466 467 468 469 470
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
471

S
sneaxiy 已提交
472 473
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
474

S
sneaxiy 已提交
475 476
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
477

S
sneaxiy 已提交
478
          out = fluid.layers.argmin(x=in, axis=0)
479
          out = fluid.layers.argmin(x=in, axis=-1)
S
sneaxiy 已提交
480 481
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
482
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
483 484 485 486 487 488 489 490 491 492 493 494
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

495
    This function computes the indices of the max elements
S
sneaxiy 已提交
496 497 498 499 500 501
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
502

S
sneaxiy 已提交
503 504
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
505

S
sneaxiy 已提交
506 507
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
508

S
sneaxiy 已提交
509
          out = fluid.layers.argmax(x=in, axis=0)
510
          out = fluid.layers.argmax(x=in, axis=-1)
S
sneaxiy 已提交
511 512
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
513
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
514 515 516 517 518 519 520 521
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


522
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
523
    """
M
minqiyang 已提交
524 525
    Performs sorting on the input Variable along the given axis, and outputs
    sorted data Varibale and its corresponding index Variable with the same
Y
Yibing Liu 已提交
526 527 528
    shape as :attr:`input`.

    .. code-block:: text
M
minqiyang 已提交
529

Y
Yibing Liu 已提交
530 531 532 533 534 535 536 537 538 539 540 541
        For example, the given axis is -1 and the input Variable

            input = [[0.15849551, 0.45865775, 0.8563702 ],
                     [0.12070083, 0.28766365, 0.18776911]],

        after argsort, the sorted Vairable becomes

            out = [[0.15849551, 0.45865775, 0.8563702 ],
                   [0.12070083, 0.18776911, 0.28766365]],

        and the sorted indices along the given axis turn outs to be

M
minqiyang 已提交
542
            indices = [[0, 1, 2],
Y
Yibing Liu 已提交
543 544 545 546
                       [0, 2, 1]]

    Args:
        input(Variable): The input Variable for sorting.
M
minqiyang 已提交
547 548
        axis(int): The axis along which to sort the input Variable. When
                   :attr:`axis` < 0, the actual axis will be :attr:`axis` +
Y
Yibing Liu 已提交
549
                   rank(:attr:`input`). Default -1, the last dimension.
M
minqiyang 已提交
550
        name(str|None): (optional) A name for this layer. If set None, the
551
                   layer will be named automatically.
Y
Yibing Liu 已提交
552 553 554 555 556 557 558 559 560 561 562

    Returns:
        tuple: A tuple of sorted data Variable and the sorted indices.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(data=[2, 3])
            out, indices = fluid.layers.argsort(input, axis=0)
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
563 564 565 566
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
567 568 569 570
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
571 572
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
573 574 575
    return out, ids


Y
Yang Yu 已提交
576
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
577
    """
578 579 580 581 582 583 584 585
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
C
chengduozh 已提交
586
        shape(tuple|list): Shape of output tensor
587
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
588 589 590 591 592 593 594 595

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
596
    """
C
chengduozh 已提交
597 598 599 600
    assert isinstance(shape, list) or isinstance(
        shape, tuple), "The shape's type should be list or tuple."
    assert reduce(lambda x, y: x * y,
                  shape) > 0, "The shape is invalid: %s." % (str(shape))
Y
Yu Yang 已提交
601 602 603
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
604
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
605
    """
606 607 608 609 610 611 612 613
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
614 615 616
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
617 618

    Returns:
W
wanghaoshuang 已提交
619
        Variable: The tensor variable storing the output.
620 621 622 623 624

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
625 626
    """
    return fill_constant(value=0.0, **locals())
627 628


F
fengjiayi 已提交
629 630 631 632 633 634 635 636
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
637 638 639
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
654
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
655 656
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
657
        inputs={'X': x},
F
fengjiayi 已提交
658 659 660 661 662
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


663 664 665 666 667 668 669
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
670 671 672
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
688 689
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
690
        file_path(str): The file path where variables will be saved.
691
        overwrite(bool): Whether or not cover the given file when it has already
692 693
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
733 734 735 736 737 738 739 740 741 742 743 744 745


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
746
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
762
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
779
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
780 781
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828


def range(start, end, step, dtype):
    """
    Return evenly spaced values within a given interval.

    Values are generated within the half-open interval [start, stop) (in other words,
    the interval including start but excluding stop).

    args:
        start(int|float|Variable): Start of interval. The interval includes this value.
        end(int|float|Variable): End of interval. The interval does not include this
                                 value, except in some cases where step is not an integer
                                 and floating point round-off affects the length of out. 
        step(int|float|Variable): Spacing between values. For any output out, this is the
                                  distance between two adjacent values, out[i+1] - out[i].
                                  The default step size is 1.
        dtype(string): 'float32'|'int32'|..., the data type of the output tensor.

    returns:
        Evenly spaced values within a given interval.

    examples:

        .. code-block:: python

             data = fluid.layers.range(0, 10, 2, 'int32')

    """
    helper = LayerHelper("range", **locals())

    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(end, Variable):
        end = fill_constant([1], dtype, end)
    if not isinstance(step, Variable):
        step = fill_constant([1], dtype, step)

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
        outputs={'Out': [out]})
    return out