sum_mkldnn_op.cc 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/*Licensed under the Apache License, Version 2.0(the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

      http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. */

#include "mkldnn.hpp"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/operators/sum_op.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
T
tangwei12 已提交
40
using mkldnn::reorder;
41 42
using mkldnn::stream;
using mkldnn::sum;
T
tangwei12 已提交
43 44 45
using paddle::framework::Tensor;
using paddle::platform::CPUDeviceContext;
using paddle::platform::MKLDNNDeviceContext;
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
using platform::to_void_cast;

template <typename T>
class SumMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();
    auto in_vars = ctx.MultiInputVar("X");

    const int N = in_vars.size();
    auto out_var = ctx.OutputVar("Out");
    bool in_place = out_var == in_vars[0];

    if (out_var->IsType<framework::LoDTensor>()) {
      LoDTensor* output = ctx.Output<LoDTensor>("Out");
      T* output_data = output->mutable_data<T>(ctx.GetPlace());

      std::vector<int> dst_tz = framework::vectorize2int(output->dims());
      auto src_tz = dst_tz;
      memory::format output_format{memory::format::format_undef};
      std::vector<float> scales;
      std::vector<memory::primitive_desc> srcs_mpd;
      std::vector<mkldnn::memory> srcs_mem;

      PADDLE_ENFORCE(in_vars[0]->IsType<LoDTensor>(),
                     "Input[0] must be LoDTensors");
      auto& input0 = in_vars[0]->Get<LoDTensor>();
      PADDLE_ENFORCE(input0.layout() == DataLayout::kMKLDNN &&
                         input0.format() != memory::format::format_undef,
                     "Wrong layout/format for inputs[0]");

      memory::format input_format = input0.format();

82
      for (int i = 0; i < N; i++) {
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        PADDLE_ENFORCE(in_vars[i]->IsType<LoDTensor>(),
                       "all inputs must be all LoDTensors");
        auto& input = in_vars[i]->Get<LoDTensor>();
        PADDLE_ENFORCE(input.layout() == DataLayout::kMKLDNN &&
                           input.format() != memory::format::format_undef,
                       "Wrong layout/format for inputs");

        if (input.numel() == 0) {
          continue;
        }

        const T* input_data = input.data<T>();

        auto src_md =
            memory::desc(src_tz, memory::data_type::f32, input_format);
        auto src_mpd = memory::primitive_desc(src_md, mkldnn_engine);
        auto src_mem = memory(src_mpd, to_void_cast(input_data));
        srcs_mpd.push_back(src_mpd);
        srcs_mem.push_back(src_mem);
        scales.push_back(1.0);
      }

      auto dst_md =
          memory::desc(dst_tz, memory::data_type::f32, memory::format::any);

      auto sum_pd = sum::primitive_desc(dst_md, scales, srcs_mpd);
109

110 111
      std::shared_ptr<memory> dst_mem;
      if (in_place) {
112
        dst_mem.reset(new memory(sum_pd.dst_primitive_desc()));
113
      } else {
114
        dst_mem.reset(new memory(sum_pd.dst_primitive_desc(), output_data));
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
      }
      std::vector<mkldnn::primitive::at> inputs;
      for (size_t i = 0; i < srcs_mem.size(); ++i) {
        inputs.push_back(srcs_mem[i]);
      }

      auto sum_prim = mkldnn::sum(sum_pd, inputs, *dst_mem);
      output_format = (memory::format)platform::GetMKLDNNFormat(sum_pd);

      primitive reorder_prim;
      std::shared_ptr<memory> target_mem;
      if (in_place) {
        output_format = input_format;
        target_mem.reset(new memory(
            {{{src_tz}, memory::data_type::f32, output_format}, mkldnn_engine},
            output_data));
        reorder_prim = reorder(*dst_mem, *target_mem);
      }

      std::vector<primitive> pipeline;
      pipeline.push_back(sum_prim);
      if (in_place) pipeline.push_back(reorder_prim);
      stream(stream::kind::eager).submit(pipeline).wait();

139 140
      output->set_layout(DataLayout::kMKLDNN);
      output->set_format(output_format);
141 142 143 144
    } else {  // Fallback to naive version
      // TODO(@mozga-intel) Add MKLDNN SelectedRows & LoDTensorArray support
      SumKernel<CPUDeviceContext, T> reference_kernel;
      reference_kernel.Compute(ctx);
145 146 147 148 149 150 151 152 153
    }
  }
};

}  // namespace operators
}  // namespace paddle

REGISTER_OP_KERNEL(sum, MKLDNN, ::paddle::platform::CPUPlace,
                   paddle::operators::SumMKLDNNOpKernel<float>);