“bbd3eab7ee88f02131edb41738a966aa0f1a0e88”上不存在“paddle/operators/dropout_op.h”
act.h 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#pragma once

#include <string>
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/gen/jitcode.h"

namespace paddle {
namespace operators {
namespace jit {
namespace gen {

extern const float exp_float_consts[];
extern const int exp_int_0x7f[];
extern int g_tmp_mem[];

#define EXP_HIG 88.3762626647949f
#define EXP_LOW -88.3762626647949f
#define CEPHES_LOG2EF 1.44269504088896341
#define CEPHES_EXP_C1 0.693359375
#define CEPHES_EXP_C2 -2.12194440e-4
#define CEPHES_EXP_P0 1.9875691500E-4
#define CEPHES_EXP_P1 1.3981999507E-3
#define CEPHES_EXP_P2 8.3334519073E-3
#define CEPHES_EXP_P3 4.1665795894E-2
#define CEPHES_EXP_P4 1.6666665459E-1
#define CEPHES_EXP_P5 5.0000001201E-1

#define REPEAT_8TIMES(val) val, val, val, val, val, val, val, val

#define OFFSET_EXP_ONE 0 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_TWO 1 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_0P5 2 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_HIG 3 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_LOW 4 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_LOG2EF 5 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_C1 6 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_C2 7 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P0 8 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P1 9 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P2 10 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P3 11 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P4 12 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_P5 13 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_EXP_MAX_INPUT 14 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_SIGMOID_MAX 15 * YMM_FLOAT_BLOCK * sizeof(float)
#define OFFSET_SIGMOID_MIN 16 * YMM_FLOAT_BLOCK * sizeof(float)

T
tensor-tang 已提交
62
class VActFunc : public JitCode {
63
 public:
T
tensor-tang 已提交
64 65 66
  explicit VActFunc(size_t code_size, void* code_ptr)
      : JitCode(code_size, code_ptr) {}
  virtual void genCode() = 0;
67 68

 protected:
69
  // compute RELU with ymm, xmm
70 71 72 73 74 75 76
  template <typename JMM>
  void relu_jmm(JMM& dst, JMM& src, int zero_idx = 15) {  // NOLINT
    JMM zero = JMM(zero_idx);
    vxorps(zero, zero, zero);
    vmaxps(dst, src, zero);
  }

T
tensor-tang 已提交
77 78 79 80 81 82
  // compute SQUARE with ymm, xmm
  template <typename JMM>
  void square_jmm(JMM& dst, JMM& src) {  // NOLINT
    vmulps(dst, src, src);
  }

83
  // compute EXP with ymm, xmm
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
  template <typename JMM>
  void exp_jmm(JMM& dst, JMM& src, int src_idx = 11, int fx_idx = 12,  // NOLINT
               int fy_idx = 13, int mask_idx = 14, int tmp_idx = 15) {
    using namespace platform;  // NOLINT
    // check all idx can not equal
    JMM jmm_src = JMM(src_idx);
    JMM jmm_fx = JMM(fx_idx);
    JMM jmm_fy = JMM(fy_idx);
    JMM jmm_mask = JMM(mask_idx);
    JMM jmm_tmp = JMM(tmp_idx);
    reg64_t reg_ptr_global = rax;
    push(reg_ptr_global);
    vmovaps(jmm_src, src);
    mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_HIG]);
    vminps(jmm_src, jmm_src, jmm_tmp);
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOW]);
    vmaxps(jmm_src, jmm_src, jmm_tmp);
    // express exp(x) as exp(g + n*log(2))
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_LOG2EF]);
    vmulps(jmm_fx, jmm_src, jmm_tmp);
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_0P5]);
    vaddps(jmm_fx, jmm_fx, jmm_tmp);
    vroundps(jmm_fy, jmm_fx, 0x01);
    // if greater, substract 1
    vcmpgtps(jmm_mask, jmm_fy, jmm_fx);
    vmovaps(jmm_tmp, ptr[reg_ptr_global]);
    vandps(jmm_mask, jmm_mask, jmm_tmp);
    vsubps(jmm_fx, jmm_fy, jmm_mask);
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C1]);
    vmulps(jmm_fy, jmm_fx, jmm_tmp);
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_C2]);
    JMM ymm_z = JMM(jmm_mask.getIdx());
    vmulps(ymm_z, jmm_fx, jmm_tmp);
    vsubps(jmm_src, jmm_src, jmm_fy);
    vsubps(jmm_src, jmm_src, ymm_z);
    vmulps(ymm_z, jmm_src, jmm_src);
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P0]);
    vmulps(dst, jmm_src, jmm_tmp);
    for (size_t i = OFFSET_EXP_P1; i < OFFSET_EXP_P5;
         i += (YMM_FLOAT_BLOCK * sizeof(float))) {
      vmovaps(jmm_tmp, ptr[reg_ptr_global + i]);  // P1~P4
      vaddps(dst, dst, jmm_tmp);
      vmulps(dst, dst, jmm_src);
    }
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_P5]);
    vaddps(dst, dst, jmm_tmp);
    vmulps(dst, dst, ymm_z);
    vaddps(dst, dst, jmm_src);
    vmovaps(jmm_tmp, ptr[reg_ptr_global]);
    vaddps(dst, dst, jmm_tmp);
    // build 2^n
    JMM ymm_int = jmm_fx;
    vcvttps2dq(ymm_int, jmm_fx);
    mov(reg_ptr_global, reinterpret_cast<size_t>(exp_int_0x7f));
    vmovdqa(jmm_tmp, ptr[reg_ptr_global]);
    if (MayIUse(avx2) || std::is_same<JMM, xmm_t>::value) {
      vpaddd(ymm_int, ymm_int, jmm_tmp);
      vpslld(ymm_int, ymm_int, 23);
    } else if (MayIUse(avx)) {
      xmm_t xtmp1 = xmm_t(ymm_int.getIdx());
      xmm_t xtmp2 = xmm_t(jmm_tmp.getIdx());
      reg64_t reg_ptr_tmp = reg_ptr_global;
      mov(reg_ptr_tmp, reinterpret_cast<size_t>(g_tmp_mem));
      vmovdqa(ptr[reg_ptr_tmp], ymm_int);
      vmovdqa(ptr[reg_ptr_tmp + YMM_FLOAT_BLOCK * sizeof(float)], jmm_tmp);
      vpaddd(xtmp1, xtmp1, xtmp2);
      vpslld(xtmp1, xtmp1, 23);
      vmovdqa(ptr[reg_ptr_tmp], xtmp1);
      // next 128bits
      vmovdqa(xtmp1, ptr[reg_ptr_tmp + XMM_FLOAT_BLOCK * sizeof(float)]);
      vmovdqa(xtmp2, ptr[reg_ptr_tmp +
                         (YMM_FLOAT_BLOCK + XMM_FLOAT_BLOCK) * sizeof(float)]);
      vpaddd(xtmp1, xtmp1, xtmp2);
      vpslld(xtmp1, xtmp1, 23);
      vmovdqa(ptr[reg_ptr_tmp + XMM_FLOAT_BLOCK * sizeof(float)], xtmp1);
      // load out
      vmovdqa(ymm_int, ptr[reg_ptr_tmp]);
    }
    vmulps(dst, dst, ymm_int);
    pop(reg_ptr_global);
  }

167
  // compute SIGMOID with ymm, xmm
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
  template <typename JMM>
  void sigmoid_jmm(JMM& dst, JMM& src, int src_idx = 11,  // NOLINT
                   int fx_idx = 12, int fy_idx = 13, int mask_idx = 14,
                   int tmp_idx = 15) {
    // y = 1 / (1 + e^-x)
    JMM jmm_tmp = JMM(tmp_idx);
    JMM jmm_src = JMM(src_idx);
    reg64_t reg_ptr_global = rax;
    push(reg_ptr_global);
    vmovaps(jmm_src, src);
    mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_SIGMOID_MAX]);
    vminps(jmm_src, jmm_src, jmm_tmp);
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_SIGMOID_MIN]);
    vmaxps(jmm_src, jmm_src, jmm_tmp);
    vxorps(jmm_tmp, jmm_tmp, jmm_tmp);
    vsubps(jmm_src, jmm_tmp, jmm_src);
    exp_jmm<JMM>(dst, jmm_src, src_idx, fx_idx, fy_idx, mask_idx, tmp_idx);
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
    vaddps(dst, dst, jmm_tmp);
    vdivps(dst, jmm_tmp, dst);
    pop(reg_ptr_global);
  }

192
  // compute TANH with ymm, xmm
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
  template <typename JMM>
  void tanh_jmm(JMM& dst, JMM& src, int src_idx = 11,  // NOLINT
                int fx_idx = 12, int fy_idx = 13, int mask_idx = 14,
                int tmp_idx = 15) {
    // y = 2 / (1 + e^(-2x)) - 1
    JMM jmm_src = JMM(src_idx);
    JMM jmm_tmp = JMM(tmp_idx);
    JMM jmm_zero = JMM(mask_idx);
    reg64_t reg_ptr_global = rax;
    push(reg_ptr_global);
    vmovaps(jmm_src, src);
    mov(reg_ptr_global, reinterpret_cast<size_t>(exp_float_consts));
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_TWO]);
    vxorps(jmm_zero, jmm_zero, jmm_zero);
    vsubps(jmm_tmp, jmm_zero, jmm_tmp);
    vmulps(jmm_src, jmm_src, jmm_tmp);
    exp_jmm<JMM>(dst, jmm_src, src_idx, fx_idx, fy_idx, mask_idx, tmp_idx);
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
    vaddps(dst, dst, jmm_tmp);
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_TWO]);
    vdivps(dst, jmm_tmp, dst);
    vmovaps(jmm_tmp, ptr[reg_ptr_global + OFFSET_EXP_ONE]);
    vsubps(dst, dst, jmm_tmp);
    pop(reg_ptr_global);
  }

219
  // compute IDENTITY with ymm, xmm
220 221 222 223 224 225 226 227 228 229 230 231 232
  template <typename JMM>
  void identity_jmm(JMM& dst, JMM& src, int zero_idx) {  // NOLINT
    JMM zero = JMM(zero_idx);
    vxorps(zero, zero, zero);
    vaddps(dst, src, zero);
    // TODO(TJ): use below
    // dst.setIdx(src.getIdx());
  }

  template <typename JMM>
  void act(JMM& dst, JMM& src, operand_type type) {  // NOLINT
    // use 11~15
    switch (type) {
233
      case operand_type::RELU:
234 235
        relu_jmm<JMM>(dst, src, 15);
        break;
T
tensor-tang 已提交
236 237 238
      case operand_type::SQUARE:
        square_jmm<JMM>(dst, src);
        break;
239
      case operand_type::EXP:
240 241
        exp_jmm<JMM>(dst, src, 11, 12, 13, 14, 15);
        break;
242
      case operand_type::SIGMOID:
243 244
        sigmoid_jmm<JMM>(dst, src, 11, 12, 13, 14, 15);
        break;
245
      case operand_type::TANH:
246 247
        tanh_jmm<JMM>(dst, src, 11, 12, 13, 14, 15);
        break;
248
      case operand_type::IDENTITY:
249 250 251
        identity_jmm<JMM>(dst, src, 15);
        break;
      default:
T
tensor-tang 已提交
252
        LOG(FATAL) << "Do not support this operand type: " << type;
253 254 255
        break;
    }
  }
T
tensor-tang 已提交
256 257 258 259 260 261 262
};

class VActJitCode : public VActFunc {
 public:
  explicit VActJitCode(int d, operand_type type, size_t code_size,
                       void* code_ptr = nullptr)
      : VActFunc(code_size, code_ptr), num_(d), type_(type) {
263 264
    if (!(type_ == operand_type::RELU || type_ == operand_type::EXP ||
          type_ == operand_type::SIGMOID || type_ == operand_type::TANH ||
T
tensor-tang 已提交
265
          type_ == operand_type::IDENTITY || type_ == operand_type::SQUARE)) {
T
tensor-tang 已提交
266 267 268 269 270 271 272 273
      LOG(FATAL) << "Do not support this operand type: " << type_;
    }
    this->genCode();
  }

  const char* name() const override {
    std::string base = "VActJitCode";
    switch (type_) {
274
      case operand_type::RELU:
T
tensor-tang 已提交
275 276
        base += "_Relu";
        break;
T
tensor-tang 已提交
277 278 279
      case operand_type::SQUARE:
        base += "_Square";
        break;
280
      case operand_type::EXP:
T
tensor-tang 已提交
281 282
        base += "_Exp";
        break;
283
      case operand_type::SIGMOID:
T
tensor-tang 已提交
284 285
        base += "_Sigmoid";
        break;
286
      case operand_type::TANH:
T
tensor-tang 已提交
287 288
        base += "_Tanh";
        break;
289
      case operand_type::IDENTITY:
T
tensor-tang 已提交
290 291 292 293 294 295 296 297
        base += "_Identity";
        break;
      default:
        break;
    }
    return base.c_str();
  }
  void genCode() override;
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318

 protected:
  int num_;
  operand_type type_;
  reg64_t param1{abi_param1};
  reg64_t param2{abi_param2};

  xmm_t xmm_src = xmm_t(0);
  ymm_t ymm_src = ymm_t(0);

  xmm_t xmm_dst = xmm_t(1);
  ymm_t ymm_dst = ymm_t(1);
};

#define DECLARE_ACT_JITCODE(name, op_type)                                    \
  class name##JitCode : public VActJitCode {                                  \
   public:                                                                    \
    explicit name##JitCode(int d, size_t code_size, void* code_ptr = nullptr) \
        : VActJitCode(d, op_type, code_size, code_ptr) {}                     \
  };

319
DECLARE_ACT_JITCODE(VRelu, operand_type::RELU);
T
tensor-tang 已提交
320
DECLARE_ACT_JITCODE(VSquare, operand_type::SQUARE);
321 322 323 324
DECLARE_ACT_JITCODE(VIdentity, operand_type::IDENTITY);
DECLARE_ACT_JITCODE(VExp, operand_type::EXP);
DECLARE_ACT_JITCODE(VSigmoid, operand_type::SIGMOID);
DECLARE_ACT_JITCODE(VTanh, operand_type::TANH);
325 326 327 328 329 330 331

#undef DECLARE_ACT_JITCODE

}  // namespace gen
}  // namespace jit
}  // namespace operators
}  // namespace paddle