predict.py 5.3 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import numpy as np
from optparse import OptionParser
18 19
from py_paddle import swig_paddle, DataProviderConverter
from paddle.trainer.PyDataProvider2 import integer_value_sequence
Z
zhangjinchao01 已提交
20 21 22
from paddle.trainer.config_parser import parse_config
"""
Usage: run following command to show help message.
23
  python predict.py -h
Z
zhangjinchao01 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
"""
UNK_IDX = 0


class Prediction():
    def __init__(self, train_conf, dict_file, model_dir, label_file):
        """
        train_conf: trainer configure.
        dict_file: word dictionary file name.
        model_dir: directory of model.
        """

        self.dict = {}
        self.labels = {}
        self.labels_reverse = {}
        self.load_dict_label(dict_file, label_file)

        len_dict = len(self.dict)
        len_label = len(self.labels)

44 45
        conf = parse_config(train_conf, 'dict_len=' + str(len_dict) +
                            ',label_len=' + str(len_label) + ',is_predict=True')
Z
zhangjinchao01 已提交
46 47 48 49
        self.network = swig_paddle.GradientMachine.createFromConfigProto(
            conf.model_config)
        self.network.loadParameters(model_dir)

50
        slots = [
51 52 53
            integer_value_sequence(len_dict), integer_value_sequence(len_dict),
            integer_value_sequence(len_dict), integer_value_sequence(len_dict),
            integer_value_sequence(len_dict), integer_value_sequence(2)
54 55
        ]
        self.converter = DataProviderConverter(slots)
Z
zhangjinchao01 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

    def load_dict_label(self, dict_file, label_file):
        """
        Load dictionary from self.dict_file.
        """
        for line_count, line in enumerate(open(dict_file, 'r')):
            self.dict[line.strip()] = line_count

        for line_count, line in enumerate(open(label_file, 'r')):
            self.labels[line.strip()] = line_count
            self.labels_reverse[line_count] = line.strip()

    def get_data(self, data_file):
        """
        Get input data of paddle format.
        """
        with open(data_file, 'r') as fdata:
            for line in fdata:
                sentence, predicate, ctx_n1, ctx_0, ctx_p1, mark, label = line.strip(
                ).split('\t')
                words = sentence.split()
                sen_len = len(words)

                word_slot = [self.dict.get(w, UNK_IDX) for w in words]
                predicate_slot = [self.dict.get(predicate, UNK_IDX)] * sen_len
                ctx_n1_slot = [self.dict.get(ctx_n1, UNK_IDX)] * sen_len
                ctx_0_slot = [self.dict.get(ctx_0, UNK_IDX)] * sen_len
                ctx_p1_slot = [self.dict.get(ctx_p1, UNK_IDX)] * sen_len

                marks = mark.split()
                mark_slot = [int(w) for w in marks]

                yield word_slot, predicate_slot, ctx_n1_slot, \
                      ctx_0_slot, ctx_p1_slot, mark_slot

    def predict(self, data_file):
        """
        data_file: file name of input data.
        """
        input = self.converter(self.get_data(data_file))
        output = self.network.forwardTest(input)
        prob = output[0]["value"]
        lab = list(np.argsort(-prob)[:, 0])

        with open(data_file, 'r') as fin, open('predict.res', 'w') as fout:
            index = 0
            for line in fin:
                sen = line.split('\t')[0]
                len_sen = len(sen.split())
                line_labels = lab[index:index + len_sen]
                index += len_sen
107 108
                fout.write(sen + '\t' + ' '.join(
                    [self.labels_reverse[i] for i in line_labels]) + '\n')
Z
zhangjinchao01 已提交
109 110 111


def option_parser():
112
    usage = ("python predict.py -c config -w model_dir "
Z
zhangjinchao01 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
             "-d word dictionary -l label_file -i input_file")
    parser = OptionParser(usage="usage: %s [options]" % usage)
    parser.add_option(
        "-c",
        "--tconf",
        action="store",
        dest="train_conf",
        help="network config")
    parser.add_option(
        "-d",
        "--dict",
        action="store",
        dest="dict_file",
        help="dictionary file")
    parser.add_option(
        "-l",
        "--label",
        action="store",
        dest="label_file",
        default=None,
        help="label file")
    parser.add_option(
        "-i",
        "--data",
        action="store",
        dest="data_file",
        help="data file to predict")
    parser.add_option(
        "-w",
        "--model",
        action="store",
        dest="model_path",
        default=None,
        help="model path")
    return parser.parse_args()


def main():
    options, args = option_parser()
    train_conf = options.train_conf
    data_file = options.data_file
    dict_file = options.dict_file
    model_path = options.model_path
    label_file = options.label_file

    swig_paddle.initPaddle("--use_gpu=0")
    predict = Prediction(train_conf, dict_file, model_path, label_file)
    predict.predict(data_file)


if __name__ == '__main__':
    main()