similarity_focus_op.cc 3.4 KB
Newer Older
B
barrierye 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/similarity_focus_op.h"

namespace paddle {
namespace operators {
class SimilarityFocusOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), a 4-D tensor with shape,"
             " [BatchSize, X, Y, Z]");
    AddOutput("Out",
              "(Tensor, default Tensor<float>), the similarity focus mask"
              " with the same shape of input X.");
    AddAttr<int>("axis",
                 "(int32), indicating the dimension to be select. It can"
                 " only be 1, 2, or 3.");
    AddAttr<std::vector<int>>("indexes",
                              "(std::vector<int32>), indicating the indexes"
                              " of the selected dimension.");
    AddComment(R"DOC(
SimilarityFocus Operator.

Generate a similarity focus mask with the same shape of input using the following method:
B
barrierye 已提交
38
1. Extract the 4-D matrix(here the first dimension is BatchSize) corresponding
B
barrierye 已提交
39
   to the axis according to the indexes. For example, if axis=1 and indexes=[a],
B
barrierye 已提交
40
   it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
   is (BatchSize, A, B, C), the shape of matrix T is (BatchSize, B, C).
2. For each index, find the largest numbers in the matrix T, so that the same
   row and same column has at most one number(obviously there will be min(B, C)
   numbers), and mark the corresponding position of the 3-D similarity focus mask
   as 1, otherwise as 0. Do elementwise-or for each index.
3. Broadcast the 3-D similarity focus mask to the same shape of input X.

Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_
)DOC");
  }
};

class SimilarityFocusOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should be not null.");
    auto x_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE_EQ(x_dims.size(), 4, "Input(X)'s rank should be 4.");
    ctx->SetOutputDim("Out", x_dims);
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()),
        platform::CPUPlace());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(similarity_focus, ops::SimilarityFocusOp,
                  ops::SimilarityFocusOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(similarity_focus, ops::SimilarityFocusKernel<float>,
                       ops::SimilarityFocusKernel<double>);