MKLDNNFcLayer.cpp 8.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "MKLDNNFcLayer.h"
T
tensor-tang 已提交
16
#include "paddle/utils/Logging.h"
T
tensor-tang 已提交
17

T
tensor-tang 已提交
18 19 20
using namespace mkldnn;  // NOLINT
typedef memory::format format;

T
tensor-tang 已提交
21 22
namespace paddle {

23
REGISTER_LAYER(mkldnn_fc, MKLDNNFcLayer);
T
tensor-tang 已提交
24

25
bool MKLDNNFcLayer::init(const LayerMap& layerMap,
T
tensor-tang 已提交
26
                         const ParameterMap& parameterMap) {
27
  if (!MKLDNNLayer::init(layerMap, parameterMap)) {
T
tensor-tang 已提交
28 29 30
    return false;
  }

31
  CHECK_EQ(inputLayers_.size(), 1UL) << "Only support one input layer yet";
T
tensor-tang 已提交
32 33 34 35 36 37 38
  CHECK_EQ(inputLayers_.size(), parameters_.size());
  CHECK(!parameters_[0]->isSparse()) << "Do not support sparse yet";

  // output size, cat not be changed
  oc_ = getSize();
  oh_ = 1;
  ow_ = 1;
39 40
  ih_ = 1;
  iw_ = 1;
T
tensor-tang 已提交
41 42 43 44 45 46 47 48 49 50 51

  // input size can not change in FC
  iLayerSize_ = inputLayers_[0]->getSize();
  CHECK_EQ(parameters_[0]->getSize(), iLayerSize_ * oc_);

  // create weight
  weight_ =
      std::unique_ptr<Weight>(new Weight(oc_, iLayerSize_, parameters_[0], 0));

  // create biases
  if (biasParameter_.get() != NULL) {
T
tensor-tang 已提交
52
    biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_, 0));
T
tensor-tang 已提交
53 54 55 56
  }
  return true;
}

57
void MKLDNNFcLayer::convertWeightsFromPaddle() {
T
tensor-tang 已提交
58
  if (hasInitedWgt_) {
T
tensor-tang 已提交
59 60 61
    return;
  }

T
tensor-tang 已提交
62 63
  CHECK(wgtVal_) << "should have been initialized";
  auto targetDim = wgtVal_->getDims();
T
tensor-tang 已提交
64
  auto srcFmt = targetDim.size() == 2 ? format::io : format::ihwo;
T
tensor-tang 已提交
65
  wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim);
T
tensor-tang 已提交
66 67 68
  hasInitedWgt_ = true;
}

69
void MKLDNNFcLayer::convertWeightsToPaddle() {
T
tensor-tang 已提交
70 71
  CHECK(wgtVal_) << "should have been initialized";
  auto targetDim = wgtVal_->getDims();
T
tensor-tang 已提交
72
  auto dstFmt = targetDim.size() == 2 ? format::io : format::ihwo;
T
tensor-tang 已提交
73
  wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim);
T
tensor-tang 已提交
74 75
}

76
void MKLDNNFcLayer::reshape(
77
    int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) {
78
  reshapeInput(bs, ih, iw);
79

T
tensor-tang 已提交
80
  CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize());
81 82 83
  ic = iLayerSize_ / (ih * iw);
  CHECK_EQ(size_t(ic * ih * iw), iLayerSize_) << "not divisible";
  CHECK_EQ(size_t(oc), getSize());
T
tensor-tang 已提交
84

85 86
  reshapeOutput(oh, ow);
  resizeOutput(bs, oc);
T
tensor-tang 已提交
87 88
}

89
void MKLDNNFcLayer::resetFwd(std::vector<primitive>& pipeline,
90 91
                             MKLDNNMatrixPtr& in,
                             MKLDNNMatrixPtr& out) {
92
  resetFwdBuffers(in, wgtVal_, biasVal_, out);
93

94
  resetFwdPD(fwdPD_, in, wgtVal_, biasVal_, out);
95

96
  resetFwdPipeline(pipeline, fwdPD_, in, wgtVal_, biasVal_, out);
97 98 99 100 101 102 103 104
}

void MKLDNNFcLayer::resetBwd(std::vector<primitive>& pipeline,
                             MKLDNNMatrixPtr& in,
                             MKLDNNMatrixPtr& out) {
  std::shared_ptr<fc_bwdWgt::primitive_desc> bwdWgtPD;
  std::shared_ptr<fc_bwdData::primitive_desc> bwdDataPD;

105
  resetBwdBuffers(in, wgtGrad_, biasGrad_, out);
106

107
  resetBwdWgtPD(bwdWgtPD, wgtGrad_, biasGrad_, out);
108 109 110

  resetBwdDataPD(bwdDataPD, in, out);

111
  resetBwdPipeline(pipeline, bwdWgtPD, bwdDataPD, in, wgtGrad_, biasGrad_, out);
112
}
T
tensor-tang 已提交
113

114 115 116 117 118 119 120 121 122 123 124 125
void MKLDNNFcLayer::updateWeights(const UpdateCallback& callback) {
  weight_->getParameterPtr()->incUpdate(callback);
  if (biases_ && biases_->getWGrad()) {
    biases_->getParameterPtr()->incUpdate(callback);
  }
}

void MKLDNNFcLayer::resetFwdBuffers(MKLDNNMatrixPtr& in,
                                    MKLDNNMatrixPtr& wgt,
                                    MKLDNNMatrixPtr& bias,
                                    MKLDNNMatrixPtr& out) {
  resetInValue(in);
126 127
  CHECK(in);
  in->downSpatial();
128

129 130 131
  auto outPD =
      MKLDNNMatrix::createPrimitiveDesc({bs_, oc_}, format::nc, engine_);
  resetOutValue(out, outPD);
132

T
tensor-tang 已提交
133
  format wgtFmt = format::oihw;
134
  if (in->getFormat() == format::nChw8c) {
T
tensor-tang 已提交
135
    wgtFmt = format::oIhw8i;
136
  } else if (in->getFormat() == format::nChw16c) {
T
tensor-tang 已提交
137 138
    wgtFmt = format::oIhw16i;
  }
139 140 141
  auto wgtPD =
      MKLDNNMatrix::createPrimitiveDesc({oc_, ic_, ih_, iw_}, wgtFmt, engine_);
  resetWithMatrix(wgt, weight_->getW(), wgtPD);
142
  wgt->downSpatial();
143

T
tensor-tang 已提交
144 145 146 147 148
  if (biases_ && biases_->getW()) {
    auto biasPD = MKLDNNMatrix::createPrimitiveDesc({oc_}, format::x, engine_);
    resetWithMatrix(bias, biases_->getW(), biasPD);
  } else {
    bias = nullptr;
149
  }
150
}
T
tensor-tang 已提交
151

152 153 154 155 156 157 158 159
void MKLDNNFcLayer::resetFwdPD(std::shared_ptr<fc_fwd::primitive_desc>& pd,
                               MKLDNNMatrixPtr in,
                               MKLDNNMatrixPtr wgt,
                               MKLDNNMatrixPtr bias,
                               MKLDNNMatrixPtr out) {
  CHECK(in);
  CHECK(wgt);
  CHECK(out);
T
tensor-tang 已提交
160
  prop_kind pk = prop_kind::forward;
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  fc_fwd::desc fwdDesc = bias != nullptr ? fc_fwd::desc(pk,
                                                        in->getMemoryDesc(),
                                                        wgt->getMemoryDesc(),
                                                        bias->getMemoryDesc(),
                                                        out->getMemoryDesc())
                                         : fc_fwd::desc(pk,
                                                        in->getMemoryDesc(),
                                                        wgt->getMemoryDesc(),
                                                        out->getMemoryDesc());
  pd.reset(new fc_fwd::primitive_desc(fwdDesc, engine_));
}

void MKLDNNFcLayer::resetFwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<fc_fwd::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  if (bias) {
    fwd_.reset(new fc_fwd(*pd, *in, *wgt, *bias, *out));
T
tensor-tang 已提交
182
  } else {
183
    fwd_.reset(new fc_fwd(*pd, *in, *wgt, *out));
T
tensor-tang 已提交
184
  }
185
  pipeline.push_back(*fwd_);
T
tensor-tang 已提交
186 187
}

188 189 190 191
void MKLDNNFcLayer::resetBwdBuffers(MKLDNNMatrixPtr& in,
                                    MKLDNNMatrixPtr& wgt,
                                    MKLDNNMatrixPtr& bias,
                                    MKLDNNMatrixPtr& out) {
192 193 194
  CHECK(inVal_ && outVal_);
  resetOutGrad(out, outVal_->getPrimitiveDesc());
  resetInGrad(in, inVal_->getPrimitiveDesc());
195 196

  CHECK(wgtVal_);
197
  resetWithMatrix(wgt, weight_->getWGrad(), wgtVal_->getPrimitiveDesc());
198

T
tensor-tang 已提交
199 200 201 202
  if (biasVal_) {
    resetWithMatrix(bias, biases_->getWGrad(), biasVal_->getPrimitiveDesc());
  } else {
    bias = nullptr;
T
tensor-tang 已提交
203
  }
204
}
T
tensor-tang 已提交
205

206 207 208 209 210 211 212 213 214 215 216 217 218 219
void MKLDNNFcLayer::resetBwdWgtPD(
    std::shared_ptr<fc_bwdWgt::primitive_desc>& pd,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  CHECK(inVal_);
  fc_bwdWgt::desc bwdWgtDesc = bias ? fc_bwdWgt::desc(inVal_->getMemoryDesc(),
                                                      wgt->getMemoryDesc(),
                                                      bias->getMemoryDesc(),
                                                      out->getMemoryDesc())
                                    : fc_bwdWgt::desc(inVal_->getMemoryDesc(),
                                                      wgt->getMemoryDesc(),
                                                      out->getMemoryDesc());
  pd.reset(new fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, *fwdPD_));
T
tensor-tang 已提交
220 221
}

222 223 224 225 226 227 228 229 230 231 232 233
void MKLDNNFcLayer::resetBwdDataPD(
    std::shared_ptr<fc_bwdData::primitive_desc>& pd,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& out) {
  pd = nullptr;
  if (in == nullptr) {
    return;
  }
  CHECK(wgtVal_);
  fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(
      in->getMemoryDesc(), wgtVal_->getMemoryDesc(), out->getMemoryDesc());
  pd.reset(new fc_bwdData::primitive_desc(bwdDataDesc, engine_, *fwdPD_));
T
tensor-tang 已提交
234 235
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
void MKLDNNFcLayer::resetBwdPipeline(
    std::vector<primitive>& pipeline,
    std::shared_ptr<fc_bwdWgt::primitive_desc>& bwdWgtPD,
    std::shared_ptr<fc_bwdData::primitive_desc>& bwdDataPD,
    MKLDNNMatrixPtr& in,
    MKLDNNMatrixPtr& wgt,
    MKLDNNMatrixPtr& bias,
    MKLDNNMatrixPtr& out) {
  CHECK(inVal_);
  if (bias) {
    bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt, *bias));
  } else {
    bwdWgt_.reset(new fc_bwdWgt(*bwdWgtPD, *inVal_, *out, *wgt));
  }
  pipeline.push_back(*bwdWgt_);

  if (bwdDataPD == nullptr) {
    return;
T
tensor-tang 已提交
254
  }
255 256 257
  CHECK(wgtVal_) << "Should have weight memory";
  bwdData_.reset(new fc_bwdData(*bwdDataPD, *out, *wgtVal_, *in));
  pipeline.push_back(*bwdData_);
T
tensor-tang 已提交
258
}
259

T
tensor-tang 已提交
260
}  // namespace paddle