auto_parallel_gpt_model.py 38.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import collections
import random
import numpy as np

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.tensor as tensor
import paddle.distributed.auto_parallel as auto
from paddle import fluid
from paddle.fluid import layers
from paddle.distributed import fleet
from paddle.nn.layer.transformer import _convert_param_attr_to_list
from paddle.fluid.initializer import Normal, NumpyArrayInitializer

paddle.enable_static()


def init_global():
    global _global_parallel_strategy
    global _global_process_mesh
    global PP_MESH_LIST
    global DPPP_MESH_LIST
    global MPPP_MESH_LIST
    global DPMPPP_MESH_LIST


class MultiHeadAttention(nn.Layer):
    """
    Attention mapps queries and a set of key-value pairs to outputs, and
    Multi-Head Attention performs multiple parallel attention to jointly attending
    to information from different representation subspaces.
    """
    Cache = collections.namedtuple("Cache", ["k", "v"])
    StaticCache = collections.namedtuple("StaticCache", ["k", "v"])

    def __init__(self,
                 embed_dim,
                 num_heads,
                 dropout=0.,
                 kdim=None,
                 vdim=None,
                 need_weights=False,
                 weight_attr=None,
                 bias_attr=None,
                 fuse=False,
                 mesh_idx=None):
        super(MultiHeadAttention, self).__init__()
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.need_weights = need_weights
        self.fuse = fuse
        self.mesh_idx = mesh_idx
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
        if self.fuse:
            assert self.kdim == embed_dim
            assert self.vdim == embed_dim
            self.qkv_proj = nn.Linear(
                embed_dim, 3 * embed_dim, weight_attr, bias_attr=bias_attr)
        else:
            self.q_proj = nn.Linear(
                embed_dim,
                embed_dim,
                weight_attr=weight_attr,
                bias_attr=bias_attr)
            self.k_proj = nn.Linear(
                self.kdim,
                embed_dim,
                weight_attr=weight_attr,
                bias_attr=bias_attr)
            self.v_proj = nn.Linear(
                self.vdim,
                embed_dim,
                weight_attr=weight_attr,
                bias_attr=bias_attr)
        self.out_proj = nn.Linear(
            embed_dim, embed_dim, weight_attr=weight_attr, bias_attr=bias_attr)

    def _fuse_prepare_qkv(self, query):
        mix_layer = self.qkv_proj(query)
        mix_layer = paddle.reshape_(mix_layer,
                                    [0, 0, self.num_heads, 3 * self.head_dim])
        mix_layer = paddle.transpose(mix_layer, [0, 2, 1, 3])
        q, k, v = paddle.split(mix_layer, num_or_sections=3, axis=-1)
        return q, k, v

    def _prepare_qkv(self, query, key, value, use_cache=False, cache=None):
        """
        Prapares linear projected queries, keys and values for usage of subsequnt
        multiple parallel attention. If `cache` is not None, using cached results
        to reduce redundant calculations.
        """
        q = self.q_proj(query)
        if _global_parallel_strategy == "mp":
            auto.shard_tensor(
                self.q_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 0]
                })
        elif _global_parallel_strategy == "dp_mp":
            auto.shard_tensor(
                self.q_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 1]
                })
        elif _global_parallel_strategy == "mp_pp":
            auto.shard_tensor(
                self.q_proj.weight,
                dist_attr={
                    "process_mesh": MPPP_MESH_LIST[self.mesh_idx],
                    "dims_mapping": [-1, 0]
                })
        elif _global_parallel_strategy == "dp_mp_pp":
            auto.shard_tensor(
                self.q_proj.weight,
                dist_attr={
                    "process_mesh": DPMPPP_MESH_LIST[self.mesh_idx],
                    "dims_mapping": [-1, 1]
                })
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q = tensor.transpose(x=q, perm=[0, 2, 1, 3])
        if isinstance(cache, self.StaticCache):
            # for encoder-decoder attention in inference and has cached
            k, v = cache.k, cache.v
        else:
            k, v = self.compute_kv(key, value)
        if isinstance(cache, self.Cache):
            # for decoder self-attention in inference
            k = tensor.concat([cache.k, k], axis=2)
            v = tensor.concat([cache.v, v], axis=2)
        if use_cache is True:
            cache = self.Cache(k, v)
        return (q, k, v) if use_cache is False else (q, k, v, cache)

    def compute_kv(self, key, value):
        """
        Applies linear projection on input keys and values, then splits heads
        (reshape and transpose) to get keys and values from different representation
        subspaces. The results are used as key-values pairs for subsequent multiple
        parallel attention.
        It is part of calculations in multi-head attention, and is provided as
        a method to pre-compute and prefetch these results, thus we can use them
        to construct cache for inference.
        """
        k = self.k_proj(key)
        if _global_parallel_strategy == "mp":
            auto.shard_tensor(
                self.k_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 0]
                })
        elif _global_parallel_strategy == "dp_mp":
            auto.shard_tensor(
                self.k_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 1]
                })
        elif _global_parallel_strategy == "mp_pp":
            auto.shard_tensor(
                self.k_proj.weight,
                dist_attr={
                    "process_mesh": MPPP_MESH_LIST[self.mesh_idx],
                    "dims_mapping": [-1, 0]
                })
        elif _global_parallel_strategy == "dp_mp_pp":
            auto.shard_tensor(
                self.k_proj.weight,
                dist_attr={
                    "process_mesh": DPMPPP_MESH_LIST[self.mesh_idx],
                    "dims_mapping": [-1, 1]
                })
        v = self.v_proj(value)
        if _global_parallel_strategy == "mp":
            auto.shard_tensor(
                self.v_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 0]
                })
        elif _global_parallel_strategy == "dp_mp":
            auto.shard_tensor(
                self.v_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 1]
                })
        elif _global_parallel_strategy == "mp_pp":
            auto.shard_tensor(
                self.v_proj.weight,
                dist_attr={
                    "process_mesh": MPPP_MESH_LIST[self.mesh_idx],
                    "dims_mapping": [-1, 0]
                })
        elif _global_parallel_strategy == "dp_mp_pp":
            auto.shard_tensor(
                self.v_proj.weight,
                dist_attr={
                    "process_mesh": DPMPPP_MESH_LIST[self.mesh_idx],
                    "dims_mapping": [-1, 1]
                })
        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v = tensor.transpose(x=v, perm=[0, 2, 1, 3])
        return k, v

    def gen_cache(self, key, value=None, type=Cache):
        """
        Generates cache for `forward` usage in inference accroding to arguments.
        The generated cache is an instance of `MultiHeadAttention.Cache` or an
        instance of `MultiHeadAttention.StaticCache`.
        """
        if type == MultiHeadAttention.StaticCache:  # static_kv
            k, v = self.compute_kv(key, value)
            return self.StaticCache(k, v)
        elif value is None:  # incremental_state
            k = layers.fill_constant_batch_size_like(
                input=key,
                shape=[-1, self.num_heads, 0, self.head_dim],
                dtype=key.dtype,
                value=0)
            v = layers.fill_constant_batch_size_like(
                input=key,
                shape=[-1, self.num_heads, 0, self.head_dim],
                dtype=key.dtype,
                value=0)
            return self.Cache(k, v)
        else:
            # incremental_state with initial value, mainly for usage like UniLM
            return self.Cache(key, value)

    def forward(self,
                query,
                key,
                value,
                attn_mask=None,
                use_cache=False,
                cache=None):
        """
        Applies multi-head attention to map queries and a set of key-value pairs
        to outputs.
        """
        key = query if key is None else key
        value = query if value is None else value
        # compute q ,k ,v
        if use_cache is False:
            if self.fuse:
                q, k, v = self._fuse_prepare_qkv(query)
            else:
                q, k, v = self._prepare_qkv(query, key, value, use_cache, cache)
        else:
            q, k, v, cache = self._prepare_qkv(query, key, value, use_cache,
                                               cache)
        product = layers.matmul(
            x=q, y=k, transpose_y=True, alpha=self.head_dim**-0.5)
        if attn_mask is not None:
            product = product + attn_mask
        weights = F.softmax(product)
        if self.dropout:
            weights = F.dropout(
                weights,
                self.dropout,
                training=self.training,
                mode="upscale_in_train")
        out = tensor.matmul(weights, v)
        # combine heads
        out = tensor.transpose(out, perm=[0, 2, 1, 3])
        out = tensor.reshape(x=out, shape=[0, 0, out.shape[2] * out.shape[3]])
        # project to output
        out = self.out_proj(out)
        if _global_parallel_strategy == "mp":
            auto.shard_tensor(
                self.out_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [0, -1]
                })
        elif _global_parallel_strategy == "dp_mp":
            auto.shard_tensor(
                self.out_proj.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [1, -1]
                })
        elif _global_parallel_strategy == "mp_pp":
            auto.shard_tensor(
                self.out_proj.weight,
                dist_attr={
                    "process_mesh": MPPP_MESH_LIST[self.mesh_idx],
                    "dims_mapping": [0, -1]
                })
        elif _global_parallel_strategy == "dp_mp_pp":
            auto.shard_tensor(
                self.out_proj.weight,
                dist_attr={
                    "process_mesh": DPMPPP_MESH_LIST[self.mesh_idx],
                    "dims_mapping": [1, -1]
                })
        outs = [out]
        if self.need_weights:
            outs.append(weights)
        if use_cache:
            outs.append(cache)
        return out if len(outs) == 1 else tuple(outs)


class TransformerDecoder(nn.Layer):
    """
    TransformerDecoder is a stack of N decoder layers.
    """

    def __init__(self, decoder_layers, num_layers, norm=None, hidden_size=None):
        super(TransformerDecoder, self).__init__()

        self.num_layers = num_layers
        self.layers = decoder_layers
        self.norm = norm
        if norm is "LayerNorm":
            self.norm = nn.LayerNorm(hidden_size)
        elif norm is not None:
            raise ValueError("Only support LayerNorm")
        self.checkpoints = []

    def forward(self,
                tgt,
                memory,
                tgt_mask=None,
                memory_mask=None,
                use_cache=False,
                cache=None):
        """
        Applies a stack of N Transformer decoder layers on inputs. If `norm` is
        provided, also applies layer normalization on the output of last decoder
        layer.
        """
        output = tgt
        new_caches = []
        self.checkpoints = []
        if _global_parallel_strategy == "pp":
            auto.shard_tensor(
                output,
                dist_attr={
                    "process_mesh": PP_MESH_LIST[0],
                    "dims_mapping": [-1 for i in range(len(output.shape))]
                })
        if _global_parallel_strategy == "dp_pp":
            auto.shard_tensor(
                output,
                dist_attr={
                    "process_mesh": DPPP_MESH_LIST[0],
                    "dims_mapping":
                    [0] + [-1 for i in range(len(output.shape) - 1)]
                })
        if _global_parallel_strategy == "mp_pp":
            auto.shard_tensor(
                output,
                dist_attr={
                    "process_mesh": MPPP_MESH_LIST[0],
                    "dims_mapping":
                    [-1] + [-1 for i in range(len(output.shape) - 1)]
                })
        if _global_parallel_strategy == "dp_mp_pp":
            auto.shard_tensor(
                output,
                dist_attr={
                    "process_mesh": DPMPPP_MESH_LIST[0],
                    "dims_mapping":
                    [0] + [-1 for i in range(len(output.shape) - 1)]
                })
        for i, mod in enumerate(self.layers):
            if cache is None:
                if use_cache:
                    if _global_parallel_strategy == "pp":
                        output, new_cache = auto.shard_op(
                            mod,
                            dist_attr={
                                "process_mesh": PP_MESH_LIST[mod.mesh_idx]
                            })(output, memory, tgt_mask, use_cache, cache)[0]
                        auto.shard_tensor(
                            output,
                            dist_attr={
                                "process_mesh": PP_MESH_LIST[mod.mesh_idx],
                                "dims_mapping":
                                [-1 for i in range(len(output.shape))]
                            })
                    elif _global_parallel_strategy == "dp_pp":
                        output, new_cache = auto.shard_op(
                            mod,
                            dist_attr={
                                "process_mesh": DPPP_MESH_LIST[mod.mesh_idx]
                            })(output, memory, tgt_mask, use_cache, cache)[0]
                        auto.shard_tensor(
                            output,
                            dist_attr={
                                "process_mesh": DPPP_MESH_LIST[mod.mesh_idx],
                                "dims_mapping": [0] +
                                [-1 for i in range(len(output.shape) - 1)]
                            })
                    elif _global_parallel_strategy == "mp_pp":
                        output, new_cache = auto.shard_op(
                            mod,
                            dist_attr={
                                "process_mesh": MPPP_MESH_LIST[mod.mesh_idx]
                            })(output, memory, tgt_mask, use_cache, cache)[0]
                        auto.shard_tensor(
                            output,
                            dist_attr={
                                "process_mesh": MPPP_MESH_LIST[mod.mesh_idx],
                                "dims_mapping": [-1] +
                                [-1 for i in range(len(output.shape) - 1)]
                            })
                    elif _global_parallel_strategy == "dp_mp_pp":
                        output, new_cache = auto.shard_op(
                            mod,
                            dist_attr={
                                "process_mesh": DPMPPP_MESH_LIST[mod.mesh_idx]
                            })(output, memory, tgt_mask, use_cache, cache)[0]
                        auto.shard_tensor(
                            output,
                            dist_attr={
                                "process_mesh": DPMPPP_MESH_LIST[mod.mesh_idx],
                                "dims_mapping": [0] +
                                [-1 for i in range(len(output.shape) - 1)]
                            })
                    else:
                        output, new_cache = mod(output,
                                                memory,
                                                tgt_mask=tgt_mask,
                                                use_cache=use_cache,
                                                cache=cache)
                    new_caches.append(new_cache)
                else:
                    if _global_parallel_strategy == "pp":
                        output = auto.shard_op(
                            mod,
                            dist_attr={
                                "process_mesh": PP_MESH_LIST[mod.mesh_idx]
                            })(output, memory, tgt_mask, use_cache, cache)[0]
                        auto.shard_tensor(
                            output,
                            dist_attr={
                                "process_mesh": PP_MESH_LIST[mod.mesh_idx],
                                "dims_mapping":
                                [-1 for i in range(len(output.shape))]
                            })
                    elif _global_parallel_strategy == "dp_pp":
                        output = auto.shard_op(
                            mod,
                            dist_attr={
                                "process_mesh": DPPP_MESH_LIST[mod.mesh_idx]
                            })(output, memory, tgt_mask, use_cache, cache)[0]
                        auto.shard_tensor(
                            output,
                            dist_attr={
                                "process_mesh": DPPP_MESH_LIST[mod.mesh_idx],
                                "dims_mapping": [0] +
                                [-1 for i in range(len(output.shape) - 1)]
                            })
                    elif _global_parallel_strategy == "mp_pp":
                        output = auto.shard_op(
                            mod,
                            dist_attr={
                                "process_mesh": MPPP_MESH_LIST[mod.mesh_idx]
                            })(output, memory, tgt_mask, use_cache, cache)[0]
                        auto.shard_tensor(
                            output,
                            dist_attr={
                                "process_mesh": MPPP_MESH_LIST[mod.mesh_idx],
                                "dims_mapping": [-1] +
                                [-1 for i in range(len(output.shape) - 1)]
                            })
                    elif _global_parallel_strategy == "dp_mp_pp":
                        output = auto.shard_op(
                            mod,
                            dist_attr={
                                "process_mesh": DPMPPP_MESH_LIST[mod.mesh_idx]
                            })(output, memory, tgt_mask, use_cache, cache)[0]
                        auto.shard_tensor(
                            output,
                            dist_attr={
                                "process_mesh": DPMPPP_MESH_LIST[mod.mesh_idx],
                                "dims_mapping": [0] +
                                [-1 for i in range(len(output.shape) - 1)]
                            })
                    else:
                        output = mod(output,
                                     memory,
                                     tgt_mask=tgt_mask,
                                     use_cache=use_cache,
                                     cache=cache)
            else:
                if _global_parallel_strategy == "pp":
                    output, new_cache = auto.shard_op(
                        mod,
                        dist_attr={"process_mesh": PP_MESH_LIST[mod.mesh_idx]})(
                            output, memory, tgt_mask, use_cache, cache)
                    auto.shard_tensor(
                        output,
                        dist_attr={
                            "process_mesh": PP_MESH_LIST[mod.mesh_idx],
                            "dims_mapping":
                            [-1 for i in range(len(output.shape))]
                        })
                elif _global_parallel_strategy == "dp_pp":
                    output, new_cache = auto.shard_op(
                        mod,
                        dist_attr={
                            "process_mesh": DPPP_MESH_LIST[mod.mesh_idx]
                        })(output, memory, tgt_mask, use_cache, cache)
                    auto.shard_tensor(
                        output,
                        dist_attr={
                            "process_mesh": DPPP_MESH_LIST[mod.mesh_idx],
                            "dims_mapping":
                            [0] + [-1 for i in range(len(output.shape) - 1)]
                        })
                elif _global_parallel_strategy == "mp_pp":
                    output, new_cache = auto.shard_op(
                        mod,
                        dist_attr={
                            "process_mesh": MPPP_MESH_LIST[mod.mesh_idx]
                        })(output, memory, tgt_mask, use_cache, cache)
                    auto.shard_tensor(
                        output,
                        dist_attr={
                            "process_mesh": MPPP_MESH_LIST[mod.mesh_idx],
                            "dims_mapping":
                            [-1] + [-1 for i in range(len(output.shape) - 1)]
                        })
                elif _global_parallel_strategy == "dp_mp_pp":
                    output, new_cache = auto.shard_op(
                        mod,
                        dist_attr={
                            "process_mesh": DPMPPP_MESH_LIST[mod.mesh_idx]
                        })(output, memory, tgt_mask, use_cache, cache)
                    auto.shard_tensor(
                        output,
                        dist_attr={
                            "process_mesh": DPMPPP_MESH_LIST[mod.mesh_idx],
                            "dims_mapping":
                            [0] + [-1 for i in range(len(output.shape) - 1)]
                        })
                else:
                    output, new_cache = mod(output,
                                            memory,
                                            tgt_mask=tgt_mask,
                                            use_cache=use_cache,
                                            cache=cache[i])
                new_caches.append(new_cache)
            self.checkpoints.append(output.name)
        if self.norm is not None:
            output = self.norm(output)
        return output if use_cache is False else (output, new_caches)

    def gen_cache(self, memory, do_zip=False):
        """
        Generates cache for `forward` usage. The generated cache is a list, and
        each element in it is a tuple( :code:`(incremental_cache, static_cache)` )
        produced by `TransformerDecoderLayer.gen_cache`. See `TransformerDecoderLayer.gen_cache`
        for more details. If `do_zip` is True, apply `zip` on these tuples to get
        a list with two elements.
       """
        cache = [layer.gen_cache(memory) for layer in self.layers]
        if do_zip:
            cache = list(zip(*cache))
        return cache


class TransformerDecoderLayer(nn.Layer):
    """
    The transformer decoder layer.
    It contains multiheadattention and some linear layers.
    """

    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward,
                 dropout=0.1,
                 activation="gelu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=True,
                 weight_attr=None,
                 bias_attr=None,
                 mesh_idx=None):
        self._config = locals()
        self._config.pop("self")
        self._config.pop("__class__", None)  # py3
        self.mesh_idx = mesh_idx
        super(TransformerDecoderLayer, self).__init__()
        attn_dropout = dropout if attn_dropout is None else attn_dropout
        act_dropout = dropout if act_dropout is None else act_dropout
        self.normalize_before = normalize_before
        weight_attrs = _convert_param_attr_to_list(weight_attr, 3)
        bias_attrs = _convert_param_attr_to_list(bias_attr, 3)
        self.self_attn = MultiHeadAttention(
            d_model,
            nhead,
            dropout=attn_dropout,
            weight_attr=weight_attrs[0],
            bias_attr=bias_attrs[0],
            mesh_idx=self.mesh_idx)
        self.linear1 = nn.Linear(
            d_model, dim_feedforward, weight_attrs[2], bias_attr=bias_attrs[2])
        self.linear2 = nn.Linear(
            dim_feedforward, d_model, weight_attrs[2], bias_attr=bias_attrs[2])
        self.norm1 = nn.LayerNorm(d_model, epsilon=1e-5)
        self.norm2 = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout1 = nn.Dropout(dropout, mode="upscale_in_train")
        self.dropout2 = nn.Dropout(act_dropout, mode="upscale_in_train")
        self.activation = getattr(F, activation)

    def forward(self, tgt, memory, tgt_mask=None, use_cache=False, cache=None):
        residual = tgt
        if self.normalize_before:
            tgt = self.norm1(tgt)
        if use_cache is False:
            tgt = self.self_attn(tgt, tgt, tgt, tgt_mask, use_cache, cache)
        else:
            tgt, incremental_cache = self.self_attn(tgt, tgt, tgt, tgt_mask,
                                                    use_cache, cache)
        tgt = residual + self.dropout1(tgt)
        if not self.normalize_before:
            tgt = self.norm1(tgt)
        residual = tgt
        if self.normalize_before:
            tgt = self.norm2(tgt)
        if _global_parallel_strategy == "mp":
            auto.shard_tensor(
                self.linear1.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 0]
                })
        elif _global_parallel_strategy == "dp_mp":
            auto.shard_tensor(
                self.linear1.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [-1, 1]
                })
        elif _global_parallel_strategy == "mp_pp":
            auto.shard_tensor(
                self.linear1.weight,
                dist_attr={
                    "process_mesh": MPPP_MESH_LIST[self.mesh_idx],
                    "dims_mapping": [-1, 0]
                })
        if _global_parallel_strategy == "dp_mp_pp":
            auto.shard_tensor(
                self.linear1.weight,
                dist_attr={
                    "process_mesh": DPMPPP_MESH_LIST[self.mesh_idx],
                    "dims_mapping": [-1, 1]
                })
        if _global_parallel_strategy == "mp":
            auto.shard_tensor(
                self.linear2.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [0, -1]
                })
        elif _global_parallel_strategy == "dp_mp":
            auto.shard_tensor(
                self.linear2.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [1, -1]
                })
        elif _global_parallel_strategy == "mp_pp":
            auto.shard_tensor(
                self.linear2.weight,
                dist_attr={
                    "process_mesh": MPPP_MESH_LIST[self.mesh_idx],
                    "dims_mapping": [0, -1]
                })
        elif _global_parallel_strategy == "dp_mp_pp":
            auto.shard_tensor(
                self.linear2.weight,
                dist_attr={
                    "process_mesh": DPMPPP_MESH_LIST[self.mesh_idx],
                    "dims_mapping": [1, -1]
                })
        tgt = self.dropout2(
            self.linear2(F.gelu(
                self.linear1(tgt), approximate=True)))
        tgt = residual + tgt
        if not self.normalize_before:
            tgt = self.norm2(tgt)
        return tgt if use_cache is False else (tgt, incremental_cache)

    def gen_cache(self, memory):
        incremental_cache = self.self_attn.gen_cache(
            memory, type=self.self_attn.Cache)
        return incremental_cache


class GPTEmbeddings(nn.Layer):
    """
    Include embeddings from word, position and token_type embeddings
    """

    def __init__(self,
                 vocab_size,
                 hidden_size=768,
                 hidden_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=16,
                 initializer_range=0.02):
        super(GPTEmbeddings, self).__init__()
        self.word_embeddings = nn.Embedding(
            vocab_size,
            hidden_size,
            weight_attr=paddle.ParamAttr(
                name="word_embeddings",
                initializer=nn.initializer.Normal(
                    mean=0.0, std=initializer_range)))
        self.position_embeddings = nn.Embedding(
            max_position_embeddings,
            hidden_size,
            weight_attr=paddle.ParamAttr(
                name="pos_embeddings",
                initializer=nn.initializer.Normal(
                    mean=0.0, std=initializer_range)))
        self.dropout = nn.Dropout(hidden_dropout_prob)

    def forward(self, input_ids, position_ids=None):
        if position_ids is None:
            ones = paddle.ones_like(input_ids, dtype="int64")
            seq_length = paddle.cumsum(ones, axis=-1)
            position_ids = seq_length - ones
        input_embedings = self.word_embeddings(input_ids)
        if _global_parallel_strategy == "mp":
            auto.shard_tensor(
                self.word_embeddings.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [0, -1]
                })
        elif _global_parallel_strategy == "dp_mp":
            auto.shard_tensor(
                self.word_embeddings.weight,
                dist_attr={
                    "process_mesh": _global_process_mesh,
                    "dims_mapping": [1, -1]
                })
        elif _global_parallel_strategy == "mp_pp":
            auto.shard_tensor(
                self.word_embeddings.weight,
                dist_attr={
                    "process_mesh": MPPP_MESH_LIST[0],
                    "dims_mapping": [0, -1]
                })
        elif _global_parallel_strategy == "dp_mp_pp":
            auto.shard_tensor(
                self.word_embeddings.weight,
                dist_attr={
                    "process_mesh": DPMPPP_MESH_LIST[0],
                    "dims_mapping": [1, -1]
                })
        position_embeddings = self.position_embeddings(position_ids)
        embeddings = input_embedings + position_embeddings
        embeddings = self.dropout(embeddings)
        return embeddings


class GPTModel(nn.Layer):
    """
    The base model of gpt.
    """

    def __init__(self,
                 vocab_size=50304,
                 hidden_size=1024,
                 num_hidden_layers=24,
                 num_attention_heads=16,
                 intermediate_size=4096,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.,
                 attention_probs_dropout_prob=0.,
                 max_position_embeddings=512,
                 type_vocab_size=16,
                 initializer_range=0.02,
                 pad_token_id=0,
                 eos_token_id=7,
                 bos_token_id=0,
                 eol_token_id=3,
                 pp_degree=None):
        super(GPTModel, self).__init__()
        self.pad_token_id = pad_token_id
        self.initializer_range = initializer_range
        self.hidden_size = hidden_size
        self.vocab_size = vocab_size
        self.layer_per_stage = None
        self.pipline_mode = (pp_degree is not None and pp_degree > 1)
        if self.pipline_mode:
            self.layer_per_stage = num_hidden_layers // pp_degree
        self.embeddings = GPTEmbeddings(
            vocab_size, hidden_size, hidden_dropout_prob,
            max_position_embeddings, type_vocab_size, self.initializer_range)
        decoder_layers = nn.LayerList()
        for i in range(num_hidden_layers):
            mesh_index = None
            DecoderLayer = TransformerDecoderLayer
            if self.layer_per_stage is not None:
                mesh_index = i // self.layer_per_stage
            decoder_layers.append(
                DecoderLayer(
                    d_model=hidden_size,
                    nhead=num_attention_heads,
                    dim_feedforward=intermediate_size,
                    dropout=hidden_dropout_prob,
                    activation=hidden_act,
                    attn_dropout=attention_probs_dropout_prob,
                    act_dropout=hidden_dropout_prob,
                    weight_attr=paddle.ParamAttr(
                        initializer=nn.initializer.Normal(
                            mean=0.0, std=self.initializer_range)),
                    bias_attr=None,
                    mesh_idx=mesh_index))
        Decoder = TransformerDecoder
        self.decoder = Decoder(
            decoder_layers,
            num_hidden_layers,
            norm="LayerNorm",
            hidden_size=hidden_size)
        self.checkpoints = []

    def forward(self,
                input_ids,
                position_ids=None,
                attention_mask=None,
                use_cache=False,
                cache=None):
        self.checkpoints = []
        if position_ids is None:
            past_length = 0
            if cache is not None:
                past_length = paddle.shape(cache[0].k)[-2]
            position_ids = paddle.arange(
                past_length,
                paddle.shape(input_ids)[-1] + past_length,
                dtype='int64')
            position_ids = position_ids.unsqueeze(0)
            position_ids = paddle.fluid.layers.expand_as(position_ids,
                                                         input_ids)
        embedding_output = self.embeddings(
            input_ids=input_ids, position_ids=position_ids)
        if _global_parallel_strategy == "pp":
            auto.shard_tensor(
                input_ids,
                dist_attr={
                    "process_mesh": PP_MESH_LIST[0],
                    "dims_mapping": [-1 for i in range(len(input_ids.shape))]
                })
        if _global_parallel_strategy == "dp_pp":
            auto.shard_tensor(
                input_ids,
                dist_attr={
                    "process_mesh": DPPP_MESH_LIST[0],
                    "dims_mapping":
                    [0] + [-1 for i in range(len(input_ids.shape) - 1)]
                })
        if _global_parallel_strategy == "dp_mp_pp":
            auto.shard_tensor(
                input_ids,
                dist_attr={
                    "process_mesh": DPMPPP_MESH_LIST[0],
                    "dims_mapping":
                    [0] + [-1 for i in range(len(input_ids.shape) - 1)]
                })
        encoder_outputs = self.decoder(
            embedding_output,
            memory=None,
            tgt_mask=attention_mask,
            use_cache=use_cache,
            cache=cache)
        self.checkpoints.extend(self.decoder.checkpoints)
        return encoder_outputs


class GPTForPretraining(nn.Layer):
    """
    The pretraining model of GPT.
    It returns some logits and cached_kvs.
    """

    def __init__(
            self,
            gpt,
            vocab_size=50304,
            hidden_size=768,
            initializer_range=0.02, ):
        super(GPTForPretraining, self).__init__()
        self.output_embeddings = nn.Embedding(
            vocab_size,
            hidden_size,
            weight_attr=paddle.ParamAttr(
                name="output_embeddings",
                initializer=nn.initializer.Normal(
                    mean=0.0, std=initializer_range)))
        self.gpt = gpt

    def forward(self,
                input_ids,
                position_ids=None,
                attention_mask=None,
                masked_positions=None,
                use_cache=False,
                cache=None):
        outputs = self.gpt(input_ids,
                           position_ids=position_ids,
                           attention_mask=attention_mask,
                           use_cache=use_cache,
                           cache=cache)
        if use_cache:
            encoder_outputs, cached_kvs = outputs[:2]
        else:
            encoder_outputs = outputs
        logits = paddle.matmul(
            encoder_outputs, self.output_embeddings.weight, transpose_y=True)
        if use_cache:
            return logits, cached_kvs
        else:
            return logits


class GPTPretrainingCriterion(nn.Layer):
    """
    Criterion for GPT.
    It calculates the final loss.
    """

    def __init__(self):
        super(GPTPretrainingCriterion, self).__init__()
        self.loss_func = paddle.nn.CrossEntropyLoss(reduction="none")

    def forward(self, prediction_scores, masked_lm_labels, loss_mask):
        masked_lm_loss = self.loss_func(prediction_scores,
                                        masked_lm_labels.unsqueeze(2))
        loss_mask = loss_mask.reshape([-1])
        masked_lm_loss = paddle.sum(masked_lm_loss.reshape([-1]) * loss_mask)
        total_loss = masked_lm_loss / loss_mask.sum()
Z
zhaoyingli 已提交
969
        return total_loss