grad_scaler.py 27.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.dygraph.amp import AmpScaler
16 17
from paddle.fluid.dygraph.amp import OptimizerState
from collections import defaultdict
18

19
__all__ = []
20 21


22 23 24 25
def _refresh_optimizer_state():
    return {"state": OptimizerState.INIT}


26 27
class GradScaler(AmpScaler):
    """
28 29
    GradScaler is used for Auto-Mixed-Precision training in dynamic graph mode. 
    It controls the scaling of loss, helps avoiding numerical overflow.
30
    The object of this class has nineteen methods `scale()`, `unscale_()`, `minimize()`, `step()`, `update()` and `get`/`set` api of parameters.
31 32

    `scale()` is used to multiply the loss by a scale ratio.
33 34 35 36 37
    `unscale_()` is used to unscale the gradients of parameters, multiplies the gradients of parameters by 1/(scale ratio)
    `minimize()` is similar as `optimizer.minimize()`, performs parameters updating, and it will update the loss_scaling, it equal to `step()` + `update()`.
    `step()` is similar as `optimizer.step()`, which performs parameters updating.
    `update` is used to update the loss_scaling.

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

    Commonly, it is used together with `paddle.amp.auto_cast` to achieve Auto-Mixed-Precision in 
    dynamic graph mode.

    Args:
        enable(bool, optional): Enable loss scaling or not. Default is True.
        init_loss_scaling (float, optional): The initial loss scaling factor. Default is 2**15.
        incr_ratio(float, optional): The multiplier to use when increasing the loss 
                        scaling. Default is 2.0.
        decr_ratio(float, optional): The less-than-one-multiplier to use when decreasing 
                        the loss scaling. Default is 0.5.
        incr_every_n_steps(int, optional): Increases loss scaling every n consecutive 
                                steps with finite gradients. Default is 1000.
        decr_every_n_nan_or_inf(int, optional): Decreases loss scaling every n 
                                    accumulated steps with nan or inf gradients. Default is 2.
        use_dynamic_loss_scaling(bool, optional): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.
    Returns:
55
        An GradScaler object.
56 57 58

    Examples:

59
        .. code-block:: python
60
            
61
            import paddle
62

63 64 65 66
            model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
            optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
            scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
            data = paddle.rand([10, 3, 32, 32])
L
Leo Chen 已提交
67

68 69 70
            with paddle.amp.auto_cast():
                conv = model(data)
                loss = paddle.mean(conv)
L
Leo Chen 已提交
71 72 73 74
                
            scaled = scaler.scale(loss)  # scale the loss 
            scaled.backward()            # do backward
            scaler.minimize(optimizer, scaled)  # update parameters     
75
            optimizer.clear_grad()
76 77 78 79 80 81 82 83
    """

    def __init__(self,
                 enable=True,
                 init_loss_scaling=2.**15,
                 incr_ratio=2.0,
                 decr_ratio=0.5,
                 incr_every_n_steps=1000,
84
                 decr_every_n_nan_or_inf=2,
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
                 use_dynamic_loss_scaling=True):
        super(GradScaler, self).__init__(enable, init_loss_scaling, incr_ratio,
                                         decr_ratio, incr_every_n_steps,
                                         decr_every_n_nan_or_inf,
                                         use_dynamic_loss_scaling)

    def scale(self, var):
        """
        Multiplies a Tensor by the scale factor and returns scaled outputs.  
        If this instance of :class:`GradScaler` is not enabled, output are returned unmodified.

        Args:
            var (Tensor):  The tensor to scale.
        Returns:
            The scaled tensor or original tensor.
        
        Examples:
L
Leo Chen 已提交
102

103
            .. code-block:: python
104
                
105 106 107 108 109 110
                import paddle

                model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
                data = paddle.rand([10, 3, 32, 32])
L
Leo Chen 已提交
111

112 113 114
                with paddle.amp.auto_cast():
                    conv = model(data)
                    loss = paddle.mean(conv)
L
Leo Chen 已提交
115 116 117 118

                scaled = scaler.scale(loss)  # scale the loss 
                scaled.backward()            # do backward
                scaler.minimize(optimizer, scaled)  # update parameters  
119
                optimizer.clear_grad()
120 121 122 123 124
        """
        return super(GradScaler, self).scale(var)

    def minimize(self, optimizer, *args, **kwargs):
        """
125
        This function is similar as `optimizer.minimize()`, which performs parameters updating.
126 127
        
        If the scaled gradients of parameters contains NAN or INF, the parameters updating is skipped.
128
        Otherwise, if `unscale_()` has not been called, it first unscales the scaled gradients of parameters, then updates the parameters.
129 130 131 132 133 134

        Finally, the loss scaling ratio is updated.

        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.
            args:  Arguments, which will be forward to `optimizer.minimize()`.
135
            kwargs: Keyword arguments, which will be forward to `optimizer.minimize()`.
136 137

        Examples:
L
Leo Chen 已提交
138

139 140
            .. code-block:: python

141 142 143 144 145 146
                import paddle

                model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
                data = paddle.rand([10, 3, 32, 32])
L
Leo Chen 已提交
147

148 149 150
                with paddle.amp.auto_cast():
                    conv = model(data)
                    loss = paddle.mean(conv)
L
Leo Chen 已提交
151 152 153 154

                scaled = scaler.scale(loss)  # scale the loss 
                scaled.backward()            # do backward
                scaler.minimize(optimizer, scaled)  # update parameters  
155
                optimizer.clear_grad()
156 157
        """
        return super(GradScaler, self).minimize(optimizer, *args, **kwargs)
158

159 160 161 162 163
    def step(self, optimizer):
        """
        This function is similar as `optimizer.step()`, which performs parameters updating.
        
        If the scaled gradients of parameters contains NAN or INF, the parameters updating is skipped.
164
        Otherwise, if `unscale_()` has not been called, it first unscales the scaled gradients of parameters, then updates the parameters.
165 166 167 168 169

        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.

        Examples:
170

171 172 173 174
            .. code-block:: python
            
                # required: gpu
                import paddle
175

176 177 178 179 180 181 182 183 184
                model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
                data = paddle.rand([10, 3, 32, 32])
                with paddle.amp.auto_cast():
                    conv = model(data)
                    loss = paddle.mean(conv)
                scaled = scaler.scale(loss)  # scale the loss 
                scaled.backward()            # do backward
185 186
                scaler.step(optimizer)       # update parameters
                scaler.update()              # update the loss scaling ratio
187 188 189 190 191
                optimizer.clear_grad()
        """
        if not self._enable:
            return optimizer.step()

192 193 194 195 196
        optimizer_state = self._optimizer_states[id(optimizer)]
        if optimizer_state["state"] is OptimizerState.STEPPED:
            raise RuntimeError(
                "step() has already been called since the last update().")

197
        #  unscale the grad
198 199
        if optimizer_state["state"] is OptimizerState.INIT:
            self._unscale(optimizer)
200 201 202 203 204 205 206

        if self._found_inf:
            self._cache_founf_inf = True
        else:
            optimizer.step()
            self._cache_founf_inf = False

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        optimizer_state["state"] = OptimizerState.STEPPED

        if not self._use_dynamic_loss_scaling:
            self._optimizer_states = defaultdict(_refresh_optimizer_state)

    def update(self):
        """
        Updates the loss_scaling.
        
        Examples:

            .. code-block:: python
            
                # required: gpu
                import paddle

                model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
                data = paddle.rand([10, 3, 32, 32])
                with paddle.amp.auto_cast():
                    conv = model(data)
                    loss = paddle.mean(conv)
                scaled = scaler.scale(loss)     # scale the loss 
                scaled.backward()               # do backward
                scaler.step(optimizer)          # update parameters
                scaler.update()                 # update the loss scaling ratio
                optimizer.clear_grad() 
        """
        if not self._enable:
            return
238 239
        if self._use_dynamic_loss_scaling:
            self._update()
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
            self._optimizer_states = defaultdict(_refresh_optimizer_state)
        return

    def unscale_(self, optimizer):
        """
        Unscale the gradients of parameters, multiplies the gradients of parameters by 1/(loss scaling ratio).  
        If this instance of :class:`GradScaler` is not enabled, output are returned unmodified.

        Args:
            optimizer(Optimizer):  The optimizer used to update parameters.

        Returns:
            The unscaled parameters or original parameters.
        
        Examples:

            .. code-block:: python

                # required: gpu
                import paddle

                model = paddle.nn.Conv2D(3, 2, 3, bias_attr=True)
                optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
                scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
                data = paddle.rand([10, 3, 32, 32])
                with paddle.amp.auto_cast():
                    conv = model(data)
                    loss = paddle.mean(conv)
                scaled = scaler.scale(loss)  # scale the loss 
                scaled.backward()            # do backward
                scaler.unscale_(optimizer)    # unscale the parameter
                scaler.step(optimizer)
                scaler.update()  
                optimizer.clear_grad() 
        """
        return super(GradScaler, self)._unscale(optimizer)
276

277 278 279 280 281 282 283 284 285 286
    def is_enable(self):
        """
        Enable loss scaling or not.

        Returns:
            bool: enable loss scaling return True else return False.
        
        Examples:
            .. code-block:: python

287
                # required: gpu,xpu
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                enable = scaler.is_enable()
                print(enable) # True
        """
        return super(GradScaler, self).is_enable()

    def is_use_dynamic_loss_scaling(self):
        """
        Whether to use dynamic loss scaling.

        Returns:
            bool: if fixed loss_scaling is used return False, if the loss scaling is updated dynamicly return true.
        
        Examples:
            .. code-block:: python
310 311

                # required: gpu,xpu         
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                use_dynamic_loss_scaling = scaler.is_use_dynamic_loss_scaling()
                print(use_dynamic_loss_scaling) # True
        """
        return super(GradScaler, self).is_use_dynamic_loss_scaling()

    def get_init_loss_scaling(self):
        """
        Return the initial loss scaling factor.

        Reurns:
            float:  the initial loss scaling factor.
        
        Examples:
            .. code-block:: python

335
                # required: gpu,xpu
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                init_loss_scaling = scaler.get_init_loss_scaling()
                print(init_loss_scaling) # 1024
        """
        return super(GradScaler, self).get_init_loss_scaling()

    def set_init_loss_scaling(self, new_init_loss_scaling):
        """
        Set the initial loss scaling factor by `new_init_loss_scaling`.

        Args:
354
            new_init_loss_scaling(float):  The new_init_loss_scaling used to update initial loss scaling factor.
355 356 357
        
        Examples:
            .. code-block:: python
358 359
                
                # required: gpu,xpu
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                print(scaler.get_init_loss_scaling()) # 1024
                new_init_loss_scaling = 1000
                scaler.set_init_loss_scaling(new_init_loss_scaling)
                print(scaler.get_init_loss_scaling()) # 1000
        """
        super(GradScaler, self).set_init_loss_scaling(new_init_loss_scaling)

    def get_incr_ratio(self):
        """
        Return the multiplier to use when increasing the loss scaling.

        Reurns:
            float:  the multiplier to use when increasing the loss scaling.
        
        Examples:
            .. code-block:: python

385
                # required: gpu,xpu
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                incr_ratio = scaler.get_incr_ratio()
                print(incr_ratio) # 2.0
        """
        return super(GradScaler, self).get_incr_ratio()

    def set_incr_ratio(self, new_incr_ratio):
        """
        Set the multiplier to use when increasing the loss scaling by `new_incr_ratio`, `new_incr_ratio` should > 1.0.

        Args:
            new_incr_ratio(float):  The new_incr_ratio used to update the multiplier to use when increasing the loss scaling.
        
        Examples:
            .. code-block:: python

409
                # required: gpu,xpu
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                print(scaler.get_incr_ratio()) # 2.0
                new_incr_ratio = 3.0
                scaler.set_incr_ratio(new_incr_ratio)
                print(scaler.get_incr_ratio()) # 3.0
        """
        super(GradScaler, self).set_incr_ratio(new_incr_ratio)

    def get_decr_ratio(self):
        """
        Get the less-than-one-multiplier to use when decreasing the loss scaling.

        Reurns:
            float:  the less-than-one-multiplier to use when decreasing the loss scaling.
        
        Examples:
            .. code-block:: python

435
                # required: gpu,xpu
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                decr_ratio = scaler.get_decr_ratio()
                print(decr_ratio) # 0.5
        """
        return super(GradScaler, self).get_decr_ratio()

    def set_decr_ratio(self, new_decr_ratio):
        """
        Set the less-than-one-multiplier to use when decreasing the loss scaling by `new_incr_ratio`, `new_decr_ratio` should < 1.0.

        Args:
            new_decr_ratio(float):  The new_decr_ratio used to update the less-than-one-multiplier to use when decreasing the loss scaling.
        
        Examples:
            .. code-block:: python

459
                # required: gpu,xpu
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                print(scaler.get_decr_ratio()) # 0.5
                new_decr_ratio = 0.1
                scaler.set_decr_ratio(new_decr_ratio)
                print(scaler.get_decr_ratio()) # 0.1
        """
        super(GradScaler, self).set_decr_ratio(new_decr_ratio)

    def get_incr_every_n_steps(self):
        """
        Return the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.

        Reurns:
            int:  the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.
        
        Examples:
            .. code-block:: python

485
                # required: gpu,xpu
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                incr_every_n_steps = scaler.get_incr_every_n_steps()
                print(incr_every_n_steps) # 1000
        """
        return super(GradScaler, self).get_incr_every_n_steps()

    def set_incr_every_n_steps(self, new_incr_every_n_steps):
        """
        Set the num `n` by `new_incr_every_n_steps`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.

        Args:
            new_incr_every_n_steps(int):  The new_incr_every_n_steps used to update the num `n`, `n` represent increases loss scaling every `n` consecutive steps with finite gradients.
        
        Examples:
            .. code-block:: python

509
                # required: gpu,xpu
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                print(scaler.get_incr_every_n_steps()) # 1000
                new_incr_every_n_steps = 2000
                scaler.set_incr_every_n_steps(new_incr_every_n_steps)
                print(scaler.get_incr_every_n_steps()) # 2000
        """
        super(GradScaler, self).set_incr_every_n_steps(new_incr_every_n_steps)

    def get_decr_every_n_nan_or_inf(self):
        """
        Return the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.

        Reurns:
            int:  the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.
        
        Examples:
            .. code-block:: python

535
                # required: gpu,xpu
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                decr_every_n_nan_or_inf = scaler.get_decr_every_n_nan_or_inf()
                print(decr_every_n_nan_or_inf) # 2
        """
        return super(GradScaler, self).get_decr_every_n_nan_or_inf()

    def set_decr_every_n_nan_or_inf(self, new_decr_every_n_nan_or_inf):
        """
        Set the num `n` by `new_decr_every_n_nan_or_inf`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.

        Args:
            new_decr_every_n_nan_or_inf(int):  The new_decr_every_n_nan_or_inf used to update the num `n`, `n` represent decreases loss scaling every `n` accumulated steps with nan or inf gradients.
        
        Examples:
            .. code-block:: python

559
                # required: gpu,xpu
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
                import paddle
                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                print(scaler.get_decr_every_n_nan_or_inf()) # 2
                new_decr_every_n_nan_or_inf = 3
                scaler.set_decr_every_n_nan_or_inf(new_decr_every_n_nan_or_inf)
                print(scaler.get_decr_every_n_nan_or_inf()) # 3
        """
        super(GradScaler,
              self).set_decr_every_n_nan_or_inf(new_decr_every_n_nan_or_inf)
575 576 577 578 579 580 581

    def state_dict(self):
        """
        Returns the state of the scaler as a `dict`, If this instance is not enabled, returns an empty dict.

        Reurns:
            A dict of scaler includes:
582 583 584 585 586 587 588 589 590
            scale (tensor): The loss scaling factor.
            incr_ratio(float): The multiplier to use when increasing the loss scaling.
            decr_ratio(float): The less-than-one-multiplier to use when decreasing the loss scaling.
            incr_every_n_steps(int): Increases loss scaling every n consecutive steps with finite gradients.
            decr_every_n_nan_or_inf(int): Decreases loss scaling every n accumulated steps with nan or inf gradients.
            incr_count(int): The number of recent consecutive unskipped steps.
            decr_count(int): The number of recent consecutive skipped steps.
            use_dynamic_loss_scaling(bool): Whether to use dynamic loss scaling. If False, fixed loss_scaling is used. If True, the loss scaling is updated dynamicly. Default is True.

591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
        
        Examples:

            .. code-block:: python

                # required: gpu,xpu
                import paddle

                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                scaler_state = scaler.state_dict()
        """
        return super(GradScaler, self).state_dict()

    def load_state_dict(self, state_dict):
        """
        Loads the scaler state.
        
        Args:
           state_dict(dict): scaler state.  Should be an object returned from a call to `GradScaler.state_dict()`.
                
        Examples:

            .. code-block:: python

                # required: gpu,xpu
                import paddle

                scaler = paddle.amp.GradScaler(enable=True,
                                               init_loss_scaling=1024,
                                               incr_ratio=2.0,
                                               decr_ratio=0.5,
                                               incr_every_n_steps=1000,
                                               decr_every_n_nan_or_inf=2,
                                               use_dynamic_loss_scaling=True)
                scaler_state = scaler.state_dict()
                scaler.load_state_dict(scaler_state)
        """
        super(GradScaler, self).load_state_dict(state_dict)