graph_pattern_detector.h 62.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#ifdef PADDLE_WITH_TESTING
#include <gtest/gtest_prod.h>
#endif

21
#include <map>
22
#include <memory>
23
#include <numeric>
24
#include <set>
25
#include <string>
26 27
#include <unordered_map>
#include <unordered_set>
28 29
#include <utility>
#include <vector>
W
wanghuancoder 已提交
30

31 32
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
33
#include "paddle/fluid/inference/analysis/dot.h"
34

W
wanghuancoder 已提交
35 36 37 38 39 40 41 42 43
namespace paddle {
namespace framework {
namespace ir {
class Graph;
class Node;
}  // namespace ir
}  // namespace framework
}  // namespace paddle

44 45 46
namespace paddle {
namespace framework {
namespace ir {
47
class PDPattern;
48

49
// Some basic terminologies:
50 51 52 53 54 55 56 57 58
//   - PDPattern: a pattern defined as a data flow graph.
//   - PDNode: the node in the pattern, each PDNode represents an `ir::Node`
//     that meets some conditions defined in `PDNode.teller`.
//   - A pattern is defined with PDNodes with edges.

// Pattern detector node. This node helps to build a pattern.
struct PDNode {
  // tell whether an ir::Node* is a candidation for a PDNode.
  using teller_t = std::function<bool(Node*)>;
59
  enum class Type { kOp, kVar };
Y
Yan Chunwei 已提交
60 61 62 63 64 65
  enum class Role {
    kUnknown,      // No role,
    kInput,        // an input and will be retained,
    kOutput,       // an output and will be retained,
    kIntermediate  // will be removed after handler.
  };
66

67 68 69
  // this link to others
  PDNode& LinksTo(const std::vector<PDNode*>& others);
  PDNode& LinksFrom(const std::vector<PDNode*>& others);
70 71

  bool Tell(Node* node) const {
Y
Yan Chunwei 已提交
72 73 74 75 76 77
    if (teller_) return teller_(node);

    for (auto& asrt : asserts_) {
      if (!asrt(node)) return false;
    }
    return true;
78 79
  }

80 81 82
  bool IsOp() const { return type_ == Type::kOp; }
  bool IsVar() const { return type_ == Type::kVar; }

83
  const std::string& name() const { return name_; }
J
JingZhuangzhuang 已提交
84
  const PDPattern* pdpattern() const { return pattern_; }
85 86

  PDNode& operator=(const PDNode&) = delete;
Y
Yan Chunwei 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  PDNode(const PDNode&) = delete;

  // Mark this node is an Input of a subgraph and will be retained.
  PDNode* AsInput() {
    role_ = Role::kInput;
    return this;
  }
  // Mark this node is an Output of a subgraph and will be retained.
  PDNode* AsOutput() {
    role_ = Role::kOutput;
    return this;
  }
  // Mark this node will be removed, so all the links should be inside a matched
  // sub-graph.
  PDNode* AsIntermediate() {
    role_ = Role::kIntermediate;
    return this;
  }

  bool IsIntermediate() const { return role_ == Role::kIntermediate; }
  bool IsInput() const { return role_ == Role::kInput; }
  bool IsOutput() const { return role_ == Role::kOutput; }

  // Assertions, helper functions to simplify the pattern definition.
  PDNode* assert_is_op();
  PDNode* assert_is_op(const std::string& op_type);
S
shentanyue 已提交
113
  PDNode* assert_is_not_op_type(const std::string& op_type);
Y
Yan Chunwei 已提交
114
  PDNode* assert_is_var();
Z
Zhen Wang 已提交
115
  PDNode* assert_var_dtype(proto::VarType::Type dtype);
C
chengduo 已提交
116
  PDNode* assert_is_not_ctrl_var();
Y
Yan Chunwei 已提交
117 118 119
  PDNode* assert_var_not_persistable();
  PDNode* assert_is_persistable_var();
  PDNode* assert_is_op_output(const std::string& op_type);
120 121
  PDNode* assert_is_op_output(const std::string& op_type,
                              const std::string& argument);
Y
Yan Chunwei 已提交
122
  PDNode* assert_is_op_input(const std::string& op_type);
123 124
  PDNode* assert_is_op_input(const std::string& op_type,
                             const std::string& argument);
Y
Yan Chunwei 已提交
125 126
  PDNode* assert_is_op_nth_input(const std::string& op_type,
                                 const std::string& argument, int nth);
Z
Zhen Wang 已提交
127
  PDNode* assert_is_not_op_input(const std::string& argument);
Y
Yan Chunwei 已提交
128 129 130 131 132 133 134
  PDNode* assert_is_op_nth_output(const std::string& op_type,
                                  const std::string& argument, int nth);
  PDNode* assert_is_only_input_of_op(const std::string& op_type);
  PDNode* assert_is_only_output_of_op(const std::string& op_type);
  PDNode* assert_op_has_n_inputs(const std::string& op_type, size_t n);
  PDNode* assert_op_has_n_outputs(const std::string& op_type, size_t n);
  PDNode* assert_more(teller_t&& teller);
135

C
chengduo 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149
  PDNode* assert_is_ops_output(const std::unordered_set<std::string>& op_types);
  PDNode* assert_is_ops(const std::unordered_set<std::string>& op_types);
  PDNode* assert_is_ops_output(const std::unordered_set<std::string>& op_types,
                               const std::string& argument);
  PDNode* assert_is_ops_nth_input(
      const std::unordered_set<std::string>& op_types,
      const std::string& argument, int nth);
  PDNode* assert_is_ops_input(const std::unordered_set<std::string>& op_types);
  PDNode* assert_is_ops_input(const std::unordered_set<std::string>& op_types,
                              const std::string& argument);
  PDNode* assert_is_ops_nth_output(
      const std::unordered_set<std::string>& op_types,
      const std::string& argument, int nth);

150 151 152 153 154
  PDNode* assert_is_only_input_of_ops(
      const std::unordered_set<std::string>& op_types);
  PDNode* assert_is_only_output_of_ops(
      const std::unordered_set<std::string>& op_types);

155 156 157
  PDNode* assert_has_n_inputs(size_t n);
  PDNode* assert_has_n_outputs(size_t n);

T
tensor-tang 已提交
158 159 160 161
  template <typename T>
  PDNode* assert_op_attr(const std::string& attr_name, const T& attr) {
    asserts_.emplace_back([=](Node* x) {
      return x && x->IsOp() && x->Op()->HasAttr(attr_name) &&
162
             BOOST_GET_CONST(T, x->Op()->GetAttr(attr_name)) == attr;
T
tensor-tang 已提交
163 164 165 166
    });
    return this;
  }

167
 private:
Y
Yan Chunwei 已提交
168 169 170
  PDNode(PDPattern* pattern, const std::string& name = "",
         Type type = Type::kVar)
      : pattern_(pattern), name_(name), type_(type) {}
171 172 173 174 175 176
  PDNode(teller_t&& teller, PDPattern* pattern, const std::string& name = "",
         Type type = Type::kVar)
      : teller_(std::move(teller)),
        pattern_(pattern),
        name_(name),
        type_(type) {
177 178 179
    PADDLE_ENFORCE_NOT_NULL(
        teller_,
        platform::errors::NotFound("invalid teller is set, teller is null"));
180 181 182 183 184 185
  }

  PDNode(PDNode&& other) = default;

  friend class PDPattern;

Y
Yan Chunwei 已提交
186
  // Will removed latter.
187
  teller_t teller_;
Y
Yan Chunwei 已提交
188
  std::vector<teller_t> asserts_;
189
  PDPattern* pattern_;
190
  std::string name_;
191
  Type type_;
Y
Yan Chunwei 已提交
192
  Role role_{Role::kUnknown};
193 194 195 196 197 198 199 200 201 202 203 204
};

/*
 * A pattern in a graph, which defined with PDNode and edges. Most graph
 * patterns can be divided into PDNodes and link relations between them.
 *
 * For example, the FC fusion need to filter the MUL and ELEMENTWISE_ADD
 * operators from the computation graph, the MUL's output should have only one
 * consumer which is the ELEMENTWISE_ADD.
 * This pattern can be defined as with the following pseudo codes
 *
 *     // Create two operator PDNodes.
Y
Yan Chunwei 已提交
205 206
 *     MUL = PDPattern.NewNode().assert_is_op("mul");
 *     ELE = PDPattern.NewNode().assert_is_op("elementwise_add");
207
 *     // Create the variable PDNodes.
Y
Yan Chunwei 已提交
208 209 210 211 212 213
 *     MUL_out = PDPattern.NewNode().assert_is_op_output("mul") \
 *                                  .assert_is_op_input("elementwise_add") \
 *                                  .AsIntermediate();
 *     // Add relations.
 *     MUL->LinksTo({MUL_out});
 *     MUL_out->LinksTo({ELE});
214
 *
Y
Yan Chunwei 已提交
215 216
 * One can add more specific asserts for PDNodes or edges, both the Operator
 * and Variable Nodes can be ruled in PDNode.assert_more(...).
217 218 219 220 221 222 223 224 225 226 227
 *
 * PDPattern can record the general patterns, such as the pattern represents
 *   - Op in CPU -> Op in GPU -> Op in CPU, to findout the IO abnormal place.
 *   - Ops whose inputs and outputs share the same variables
 */
class PDPattern {
 public:
  using edge_t = std::pair<PDNode*, PDNode*>;

  void AddEdge(PDNode* a, PDNode* b);

228
  PDNode* NewNode(PDNode::teller_t&& teller, const std::string& name = NewID());
Y
Yan Chunwei 已提交
229
  PDNode* NewNode(const std::string& name = NewID());
230 231 232
  PDNode* NewNode(const std::string& prefix, const std::string& name) {
    return NewNode(prefix + "/" + name);
  }
Y
Yan Chunwei 已提交
233
  PDNode* RetrieveNode(const std::string& id) const;
234 235 236 237

  const std::vector<std::unique_ptr<PDNode>>& nodes() const { return nodes_; }
  const std::vector<edge_t>& edges() const { return edges_; }

238 239
  std::string DotString() const;

240 241 242 243 244 245
 private:
#ifdef PADDLE_WITH_TESTING
  FRIEND_TEST(PDPattern, AddEdge);
  FRIEND_TEST(PDPattern, NewNode);
#endif

246 247
  static std::string NewID() { return "pdnode-" + std::to_string(id_++); }

248 249
  std::vector<std::unique_ptr<PDNode>> nodes_;
  std::vector<edge_t> edges_;
250
  std::map<std::string, PDNode*> node_map_;
251
  static size_t id_;
252 253 254
};

/*
255
 * GraphPatternDetector helps to detect the specific patterns in the graph.
256 257 258 259 260 261 262 263 264 265 266
 * Input a pattern, output a list of the matched subgraphs/nodes.
 * This helper can be used to support fuse(conv+batchnorm => batchnorm e.g.).
 *
 * The algorithm has three phases:
 *   1. Mark the nodes that match the defined PDNodes in a PDPattern,
 *   2. Extend a PDNode to subgraphs by deducing the connection relation defined
 *      in PAPattern(the edges),
 *   3. Get the filtered subgraphs and treat them with a pre-defined handler.
 *
 * Usage:
 *    // Create a detector
267
 *    GraphPatternDetector detector;
268 269 270 271 272 273 274 275
 *    // Define the detector's pattern, by adding PDNode and define the edges.
 *    auto* node0 = detector.mutable_pattern().AddNode(...)
 *    auto* node1 = detector.mutable_pattern().AddNode(...)
 *    node0->teller = some lambda.
 *    node1->teller = some lambda.
 *    detector.mutable_pattern().AddEdge(node0, node1);
 *    // Create an handler, to define the behavior of treating the filtered
 *    // subgraphs that comply with the patterns.
276
 *    GraphPatternDetector::handle_t handler = some labmda
277 278 279
 *    // Execute the detector.
 *    detector(&graph, handler);
 */
280
class GraphPatternDetector {
281
 public:
J
JingZhuangzhuang 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
  struct NodeIdCompare {
    bool operator()(Node* node1, Node* node2) const {
      return node1->id() < node2->id();
    }
  };

  struct PDNodeCompare {
    bool operator()(const PDNode* node1, const PDNode* node2) const {
      auto& nodes1 = node1->pdpattern()->nodes();
      auto& nodes2 = node2->pdpattern()->nodes();
      if (nodes1.size() != nodes2.size()) {
        return nodes1.size() < nodes2.size();
      } else {
        std::string pdnode_hash_key1 = "";
        std::string pdnode_hash_key2 = "";
        for (auto& node : nodes1) {
          pdnode_hash_key1 += node.get()->name();
          pdnode_hash_key1 += "#";
        }
        pdnode_hash_key1 += node1->name();
        for (auto& node : nodes2) {
          pdnode_hash_key2 += node.get()->name();
          pdnode_hash_key2 += "#";
        }
        pdnode_hash_key2 += node2->name();

        auto pdnode_key1 =
            std::to_string(std::hash<std::string>()(pdnode_hash_key1));
        auto pdnode_key2 =
            std::to_string(std::hash<std::string>()(pdnode_hash_key2));

        return pdnode_key1 < pdnode_key2;
      }
      return false;
    }
  };

  using subgraph_t = std::map<PDNode*, Node*, PDNodeCompare>;
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

  // Operate on the detected pattern.
  using handle_t =
      std::function<void(const subgraph_t& /*hitted pattern*/, Graph*)>;

  void operator()(Graph* graph, handle_t handler);

  const PDPattern& pattern() const { return pattern_; }
  PDPattern* mutable_pattern() { return &pattern_; }

 private:
  // Mark the nodes that fits the pattern.
  bool MarkPDNodesInGraph(const ir::Graph& graph);

  // Detect all the pattern and output the hit records.
  std::vector<subgraph_t> DetectPatterns();

  // Remove duplicate patterns.
  void UniquePatterns(std::vector<subgraph_t>* subgraphs);

Z
Zhang Ting 已提交
340 341 342 343 344 345
  // Sort subgraphs, sort subgraphs by the specified node so that
  // the removed forward and backward subgraphs are corresponding
  // when two subgraphs are overlapped. Note: this function is
  // currently only used for bn_add_act, refer to PR28196 for details.
  void SortSubgraphs(std::vector<subgraph_t>* subgraphs);

346
  // Remove overlapped match subgraphs, when overlapped, keep the previous one.
Y
Yan Chunwei 已提交
347 348
  // The intermediate PDNodes will be removed, so can't shared by multiple
  // patterns.
349 350
  void RemoveOverlappedMatch(std::vector<subgraph_t>* subgraphs);

Y
Yan Chunwei 已提交
351 352 353
  // Validate whether the intermediate nodes are linked by external nodes.
  void ValidateByNodeRole(std::vector<subgraph_t>* subgraphs);

354 355 356 357 358 359 360 361 362
#ifdef PADDLE_WITH_TESTING
  FRIEND_TEST(GraphPatternDetecter, MarkPDNodesInGraph);
  FRIEND_TEST(GraphPatternDetecter, DetectPatterns);
#endif

 private:
  using hit_rcd_t =
      std::pair<Node* /*node in graph*/, PDNode* /*node in pattern*/>;
  PDPattern pattern_;
J
JingZhuangzhuang 已提交
363 364
  std::map<const PDNode*, std::set<Node*, NodeIdCompare>, PDNodeCompare>
      pdnodes2nodes_;
365 366
};

367 368
// some helper methods.

369 370 371 372 373
// Tell if a var links to an Op
bool VarLinksToOp(Node* node, const std::string& op_type);

// Tell if an op links to a var
bool VarLinksFromOp(Node* node, const std::string& op_type);
374 375

// Check whether a var node is a op node's nth input.
376
bool IsNthInput(Node* var, Node* op, const std::string& argument, size_t nth);
377

378 379 380
// Check whether the op node has input of given name.
bool HasInput(Node* op, const std::string& argument);

381 382 383
// Check whether the op node has output of given name.
bool HasOutput(Node* op, const std::string& argument);

384 385 386 387 388 389 390 391
// Tell whether a var node is a op node's nth output.
bool IsNthOutput(Node* var, Node* op, const std::string& argument, size_t nth);

// Graph safely remove some nodes, will automatically clean up the edges.
void GraphSafeRemoveNodes(Graph* graph,
                          const std::unordered_set<const Node*>& nodes);

// Some pre-defined patterns those can be reused in multiple passes.
392 393
// The related Fluid Layer or Op should be one pattern here for better re-usage
// across different fusion.
394 395
namespace patterns {

Y
Yan Chunwei 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
struct KeyCounter {
  static KeyCounter& Instance() {
    static KeyCounter x;
    return x;
  }

  int IncCounter(const std::string& key) { return dic_[key]++; }

 private:
  std::unordered_map<std::string, size_t> dic_;
};

// Generate a unique PDNode's name with name_scope and id.
// The format is {name_scope}/{repr}/{id}/{name}
static std::string PDNodeName(const std::string& name_scope,
                              const std::string& repr, size_t id,
                              const std::string& name) {
  return string::Sprintf("%s/%s/%d/%s", name_scope, repr, id, name);
}
// Generate a unique PDNode's name.
// The format is {name_scope}/{repr}/{id}
static std::string PDNodeName(const std::string& name_scope,
                              const std::string& repr) {
  return string::Sprintf("%s/%s/%d", name_scope, repr,
                         KeyCounter::Instance().IncCounter(repr));
}
// Generate a unique key. It can be used for a universally unique temporary
// name.
// The format is {repr}/{id}
static std::string UniqueKey(const std::string& repr) {
  return string::Sprintf("%s/%d", repr,
                         KeyCounter::Instance().IncCounter(repr));
}

// Declare a PDNode in a pattern, will create two methods:
// std::string xxx_repr(); return this PDNode's string id.
// PDNode* xxx_n(); return the corresponding PDNode.
#define PATTERN_DECL_NODE(name__)                        \
  std::string name__##_repr() const {                    \
    return PDNodeName(name_scope_, repr_, id_, #name__); \
  }                                                      \
  PDNode* name__##_n() const { return pattern->RetrieveNode(name__##_repr()); }

// Get an ir::Node* from the matched subgraph.
// var: variable.
// arg: the argument declared by PATTERN_DECL_NODE in a pattern definition.
// pat: the pattern object.
443 444 445 446 447 448 449 450
#define GET_IR_NODE_FROM_SUBGRAPH(var, arg, pat)                               \
  PADDLE_ENFORCE_NE(subgraph.count(pat.arg##_n()), 0UL,                        \
                    platform::errors::NotFound("Node not found for PDNode %s", \
                                               pat.arg##_repr()));             \
  Node* var = subgraph.at(pat.arg##_n());                                      \
  PADDLE_ENFORCE_NOT_NULL(                                                     \
      var, platform::errors::NotFound("node %s not exists in the sub-graph",   \
                                      #arg));
Y
Yan Chunwei 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

// The base class of all the patterns.
struct PatternBase {
  PatternBase(PDPattern* pattern, const std::string& name_scope,
              const std::string& repr)
      : pattern(pattern),
        name_scope_(name_scope),
        repr_(repr),
        id_(KeyCounter::Instance().IncCounter(repr)) {}

  PDPattern* pattern;

 protected:
  std::string name_scope_;
  std::string repr_;
  size_t id_;
};

S
Sylwester Fraczek 已提交
469 470 471 472 473 474 475 476 477 478 479
// Conv with batch norm
// op: conv + (elementwise_add +) batch_norm
// named nodes:
// conv_weight, conv_out, conv,
// bn_x, bn_scale, bn_bias, bn_mean,  bn_variance,
// bn_batch_norm, bn_y, bn_mean_out, bn_variance_out,
// bn_saved_mean, bn_saved_variance
struct ConvBN : public PatternBase {
  ConvBN(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "conv_bn") {}

480 481
  PDNode* operator()(PDNode* conv_input, const std::string& conv_type,
                     bool with_eltwise_add);
S
Sylwester Fraczek 已提交
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

  // declare operator node's name
  PATTERN_DECL_NODE(conv);
  PATTERN_DECL_NODE(batch_norm);
  PATTERN_DECL_NODE(eltwise);  // ELEMENTWISE_ADD
  // CONV inputs
  PATTERN_DECL_NODE(conv_weight);  // Filter
  // CONV outputs
  PATTERN_DECL_NODE(conv_out);  // tmp
  // ELTWISE inputs
  PATTERN_DECL_NODE(eltwise_y_in);
  // ELTWISE outputs
  PATTERN_DECL_NODE(eltwise_out);  // tmp
  // BN inputs
  PATTERN_DECL_NODE(bn_scale);
  PATTERN_DECL_NODE(bn_bias);
  PATTERN_DECL_NODE(bn_mean);
  PATTERN_DECL_NODE(bn_variance);
  // BN outputs
  PATTERN_DECL_NODE(bn_out);  // Out
  PATTERN_DECL_NODE(bn_mean_out);
  PATTERN_DECL_NODE(bn_variance_out);
  PATTERN_DECL_NODE(bn_saved_mean);
  PATTERN_DECL_NODE(bn_saved_variance);
};

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
// Conv with Activation
// op: conv + activation
// named nodes:
// conv_input, conv_weight,
// conv_out, conv,
// activation_out, activation
struct ConvActivation : public PatternBase {
  ConvActivation(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "conv_activation") {}

  PDNode* operator()(PDNode* conv_input, std::string conv_type = "conv2d",
                     std::string activation_type = "relu");

  // declare operator node's name
  PATTERN_DECL_NODE(conv);
  PATTERN_DECL_NODE(activation);
  // declare variable node's name
  PATTERN_DECL_NODE(conv_weight);
  PATTERN_DECL_NODE(conv_out);
  PATTERN_DECL_NODE(activation_out);
};

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
// Elementwise with Activation
// op: elementwise + activation
// named nodes:
// elementwise_a, elementwise_b,
// elementwise_out, elementwise,
// activation_out, activation
struct ElementwiseActivation : public PatternBase {
  ElementwiseActivation(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "elementwise_add_activation") {}

  PDNode* operator()(PDNode* elementwise_a, const std::string& elementwise_type,
                     const std::string& activation_type);

  // declare operator node's name
  PATTERN_DECL_NODE(elementwise);
  PATTERN_DECL_NODE(activation);
  // declare variable node's name
  PATTERN_DECL_NODE(elementwise_b);
  PATTERN_DECL_NODE(elementwise_out);
  PATTERN_DECL_NODE(activation_out);
};

T
tensor-tang 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
// SEQCONV with Elementwise_Add ReLU
// op: seqconv + elementwise_add + relu
// named nodes:
// seqconv_input, seqconv_weight,
// seqconv_out, seqconv,
// elementwise_add_bias, elementwise_add_out, elementwise_add
// relu_out, relu
struct SeqConvEltAddRelu : public PatternBase {
  SeqConvEltAddRelu(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "seqconv_eltadd_relu") {}

  PDNode* operator()(PDNode* seqconv_input);

  // declare operator node's name
  PATTERN_DECL_NODE(seqconv);
  PATTERN_DECL_NODE(eltadd);
  PATTERN_DECL_NODE(relu);
  // declare variable node's name
  PATTERN_DECL_NODE(seqconv_weight);
  PATTERN_DECL_NODE(seqconv_out);
  PATTERN_DECL_NODE(eltadd_bias);
  PATTERN_DECL_NODE(eltadd_out);
  PATTERN_DECL_NODE(relu_out);
};

577 578 579 580 581
// FC with bias
// op: mul + elementwise_add
// named nodes:
// mul, elementwise_add
// w, mul_out, bias, fc_out
Y
Yan Chunwei 已提交
582 583 584 585
struct FC : public PatternBase {
  FC(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "fc") {}

586
  PDNode* operator()(PDNode* x, bool with_bias, bool with_relu);
Y
Yan Chunwei 已提交
587 588 589 590 591

  // declare operator node's name
  PATTERN_DECL_NODE(fc);
  PATTERN_DECL_NODE(mul);
  PATTERN_DECL_NODE(elementwise_add);
592
  PATTERN_DECL_NODE(relu);
Y
Yan Chunwei 已提交
593 594 595 596
  // declare variable node's name
  PATTERN_DECL_NODE(w);
  PATTERN_DECL_NODE(mul_out);  // (x,w) -> mul_out
  PATTERN_DECL_NODE(bias);
597 598
  PATTERN_DECL_NODE(elementwise_add_out);
  PATTERN_DECL_NODE(relu_out);
Y
Yan Chunwei 已提交
599 600
};

601 602 603 604 605 606 607 608 609 610 611 612 613 614
// MKL-DNN's FC with bias
// op: fc
// named node:
// fc
// w, bias, output
struct FCMKLDNN : public PatternBase {
  FCMKLDNN(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "fc_mkldnn") {}

  PDNode* operator()(PDNode* x, bool with_bias);

  // declare operator node's name
  PATTERN_DECL_NODE(fc);
  // declare variable node's name
M
Michał Gallus 已提交
615
  PATTERN_DECL_NODE(input);
616 617 618 619 620
  PATTERN_DECL_NODE(weights);
  PATTERN_DECL_NODE(bias);
  PATTERN_DECL_NODE(output);
};

621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
//
// \brief   Pattern looking for fc and a directly following activation
// operator.
//
// \note    Currently only gelu and tanh are supported as an activation
// function.
//          Formula: act(fc(x))
//          Op: fc + act
struct FCActOneDNN : public PatternBase {
  FCActOneDNN(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "fc_act_onednn") {}

  PDNode* operator()(const std::string& act_type);

  // declare operator node's name
  PATTERN_DECL_NODE(fc);
  PATTERN_DECL_NODE(act);
  PATTERN_DECL_NODE(fc_out);
  PATTERN_DECL_NODE(act_out);
};

642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
// Fuse softplus with activation
// ops: softplus + activation
// nodes:
// softplus, softplus_out,
// activation, activation_out
struct SoftplusActivation : public PatternBase {
  SoftplusActivation(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "softplus_activation") {}

  PDNode* operator()(std::string activation_type);

  // declare operator node's name
  PATTERN_DECL_NODE(softplus);
  PATTERN_DECL_NODE(activation);
  PATTERN_DECL_NODE(softplus_out);
  PATTERN_DECL_NODE(activation_out);
};

660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
// Embedding
struct Embedding : public PatternBase {
  Embedding(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "embedding") {}

  PDNode* operator()(PDNode* x);

  // declare operator node's name
  PATTERN_DECL_NODE(lookup_table);
  // Inputs
  //
  PATTERN_DECL_NODE(Ids);
  PATTERN_DECL_NODE(W);  // embeddings
  // Outputs
  PATTERN_DECL_NODE(Out);
};

Y
Yan Chunwei 已提交
677 678 679
struct LSTM : public PatternBase {
  LSTM(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "lstm") {}
680

Y
Yan Chunwei 已提交
681
  PDNode* operator()(PDNode* x);
682

Y
Yan Chunwei 已提交
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
  // Operators
  PATTERN_DECL_NODE(lstm);

  // Inputs
  PATTERN_DECL_NODE(Input);
  PATTERN_DECL_NODE(H0);
  PATTERN_DECL_NODE(C0);
  PATTERN_DECL_NODE(Weight);
  PATTERN_DECL_NODE(Bias);

  // Outputs
  PATTERN_DECL_NODE(Hidden);
  PATTERN_DECL_NODE(Cell);
  PATTERN_DECL_NODE(BatchGate);
  PATTERN_DECL_NODE(BatchCellPreAct);
};

struct GRU : public PatternBase {
  GRU(PDPattern* pattern, const std::string& name_scope)
S
superjomn 已提交
702
      : PatternBase(pattern, name_scope, "gru") {}
Y
Yan Chunwei 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

  PDNode* operator()(PDNode* x);

  // Operators
  PATTERN_DECL_NODE(gru);

  // Inputs
  PATTERN_DECL_NODE(Bias);
  PATTERN_DECL_NODE(Weight);

  // Outputs
  PATTERN_DECL_NODE(BatchGate);
  PATTERN_DECL_NODE(BatchResetHiddenPrev);
  PATTERN_DECL_NODE(BatchHidden);
  PATTERN_DECL_NODE(Hidden);
};
T
tensor-tang 已提交
719

Z
Zhen Wang 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
// The following pattern is used to fuse batch_norm and act
// formula: act(bn(x))
// op: batch_norm + act
struct BatchNormAct : public PatternBase {
  BatchNormAct(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "bn_act") {}

  PDNode* operator()(PDNode* x, std::unordered_set<std::string> acts);

  // declare operator node's name
  PATTERN_DECL_NODE(batch_norm);
  PATTERN_DECL_NODE(act);
  // declare variable node's name
  // BN inputs
  PATTERN_DECL_NODE(bn_scale);
  PATTERN_DECL_NODE(bn_bias);
  PATTERN_DECL_NODE(bn_variance);
  PATTERN_DECL_NODE(bn_mean);
  // BN outputs
  PATTERN_DECL_NODE(bn_mean_out);
  PATTERN_DECL_NODE(bn_variance_out);
  PATTERN_DECL_NODE(bn_saved_variance);
  PATTERN_DECL_NODE(bn_saved_mean);
  PATTERN_DECL_NODE(bn_reserve_space);
  PATTERN_DECL_NODE(bn_out);
  // ACT output
  PATTERN_DECL_NODE(act_out);
};

// the backward of act(bn(x))
// op: batch_norm_grad + act_grad
struct BatchNormActGrad : public PatternBase {
  BatchNormActGrad(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "bn_act_grad") {}

  // act_grad: in["Out", "Out@GRAD"], out["X@GRAD"]
  // bn_grad: in["X", "Y@GRAD", "Scale", "Bias", "SavedMean", "SavedVariance",
  // "ReserveSpace"],
  // out["X@GRAD", "Scale@GRAD", "Bias@GRAD"]
  PDNode* operator()(PDNode* x, std::unordered_set<std::string> act_grad_types);

  // declare operator node's name
  PATTERN_DECL_NODE(act_grad);
  PATTERN_DECL_NODE(batch_norm_grad);
  // declare variable node's name
  PATTERN_DECL_NODE(act_out);
  PATTERN_DECL_NODE(d_itermediate_out);
  PATTERN_DECL_NODE(bn_x);
  PATTERN_DECL_NODE(bn_scale);
  PATTERN_DECL_NODE(bn_bias);
  PATTERN_DECL_NODE(bn_saved_mean);
  PATTERN_DECL_NODE(bn_saved_variance);
  PATTERN_DECL_NODE(bn_reserve_space);
  PATTERN_DECL_NODE(d_bn_x);
  PATTERN_DECL_NODE(d_bn_scale);
  PATTERN_DECL_NODE(d_bn_bias);
};

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
//
// \brief   Pattern looking for batch_norm and a directly following activation
// operator.
//
// \note    Currently only ReLU is supported as an activation function.
//          Formula: act(bn(x))
//          Op: batch_norm + act
struct BatchNormActOneDNN : public PatternBase {
  BatchNormActOneDNN(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "bn_act_onednn") {}

  PDNode* operator()(const std::string& act_type);

  // declare operator node's name
  PATTERN_DECL_NODE(bn_in);
  PATTERN_DECL_NODE(batch_norm);
  PATTERN_DECL_NODE(act);
  PATTERN_DECL_NODE(bn_out);
  PATTERN_DECL_NODE(act_out);
};

Z
Zhang Ting 已提交
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
// The following pattern is used to fuse batch_norm, elewise_add, and act
// formula: act(bn(x) + z)
// op: batch_norm + elewise_add + act
struct BatchNormAddAct : public PatternBase {
  BatchNormAddAct(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "bn_add_act") {}

  PDNode* operator()(PDNode* x, std::unordered_set<std::string> acts);

  // declare operator node's name
  PATTERN_DECL_NODE(batch_norm);
  PATTERN_DECL_NODE(elewise_add);
  PATTERN_DECL_NODE(act);
  // declare variable node's name
  // BN inputs
  PATTERN_DECL_NODE(bn_scale);
  PATTERN_DECL_NODE(bn_bias);
  // BN outputs
  PATTERN_DECL_NODE(bn_mean_out);
  PATTERN_DECL_NODE(bn_variance_out);
  PATTERN_DECL_NODE(bn_saved_variance);
  PATTERN_DECL_NODE(bn_saved_mean);
  PATTERN_DECL_NODE(bn_reserve_space);
  PATTERN_DECL_NODE(bn_out);
  // Elewise_Add input
  PATTERN_DECL_NODE(elewise_add_in);
  // Elewise_Add output
  PATTERN_DECL_NODE(elewise_add_out);
  // ACT output
  PATTERN_DECL_NODE(act_out);
};

// the backward of act(bn(x) + z)
// op: batch_norm_grad + elewise_add_grad + act_grad
struct BatchNormAddActGrad : public PatternBase {
  BatchNormAddActGrad(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "bn_add_act_grad") {}

  // act_grad: in["Out", "Out@GRAD"], out["X@GRAD"]
  // elewise_add_grad: in["Out@GRAD"], out["X@GRAD", "Y@GRAD"]
  // bn_grad: in["X", "Z", "Y@GRAD", "Scale", "Bias", "SavedMean",
  // "SavedVariance",
  // "ReserveSpace"],
  // out["X@GRAD", "Z@GRAD", "Scale@GRAD", "Bias@GRAD"]
  PDNode* operator()(PDNode* x, std::unordered_set<std::string> act_grad_types);

  // declare operator node's name
  PATTERN_DECL_NODE(act_grad);
  PATTERN_DECL_NODE(elewise_add_grad);
  PATTERN_DECL_NODE(batch_norm_grad);
  // declare variable node's name
  PATTERN_DECL_NODE(act_out);
  PATTERN_DECL_NODE(d_act_x);
  PATTERN_DECL_NODE(d_elewise_add_in);
  PATTERN_DECL_NODE(d_bn_out);
  PATTERN_DECL_NODE(bn_x);
  PATTERN_DECL_NODE(bn_scale);
  PATTERN_DECL_NODE(bn_bias);
  PATTERN_DECL_NODE(bn_saved_mean);
  PATTERN_DECL_NODE(bn_saved_variance);
  PATTERN_DECL_NODE(bn_reserve_space);
  PATTERN_DECL_NODE(d_bn_x);
  PATTERN_DECL_NODE(d_bn_scale);
  PATTERN_DECL_NODE(d_bn_bias);
};

C
chengduo 已提交
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
// The following patterns are used to fuse elewise_add and act
// formula: act(ele_add(x, y))
// op: elementwise_add + act
// named nodes: elementwise_add, act
//              ele_x, ele_y, elewise_add_out, act_out
struct ElewiseAddAct : public PatternBase {
  ElewiseAddAct(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "elewise_add_act") {}

  PDNode* operator()(PDNode* x, std::unordered_set<std::string> acts);

  // declare operator node's name
  PATTERN_DECL_NODE(ele_add);
  PATTERN_DECL_NODE(act);
  // declare variable node's name
  PATTERN_DECL_NODE(elewise_add_out);
  PATTERN_DECL_NODE(ele_y);
  PATTERN_DECL_NODE(act_out);
};

// formula: ele_add(x, act(y))
// op: elementwise_add + act
// named nodes: elementwise_add, act
//              act_in, act_out, ele_x, elewise_add_out
struct ActElewiseAdd : public PatternBase {
  ActElewiseAdd(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "act_elewise_add") {}

  PDNode* operator()(PDNode* x, std::unordered_set<std::string> acts);

  // declare operator node's name
  PATTERN_DECL_NODE(act);
  PATTERN_DECL_NODE(ele_add);
  // declare variable node's name
  PATTERN_DECL_NODE(act_out);
  PATTERN_DECL_NODE(ele_x);
  PATTERN_DECL_NODE(elewise_add_out);
};

// the backward of act(ele_add(x, y))
// the act is inplace.
// op: elementwise_add_grad + act_grad
// named nodes: elementwise_add_grad, act_grad
//              act_out, act_out_g, ele_y, d_itermediate_out, d_ele_x, d_ele_y
struct ElewiseAddActInplaceGrad : public PatternBase {
  ElewiseAddActInplaceGrad(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "elewise_add_act_grad1") {}

  // act_grad: in["Out", "Out@GRAD"], out["X@GRAD"]
  // ele_add_grad: in["Y", "Out@GRAD"], out["X@GRAD", "Y@GRAD"]
  PDNode* operator()(PDNode* x, std::unordered_set<std::string> acts);

  // declare operator node's name
  PATTERN_DECL_NODE(act_grad);
  PATTERN_DECL_NODE(ele_add_grad);
  // declare variable node's name
  PATTERN_DECL_NODE(act_out);
  PATTERN_DECL_NODE(d_itermediate_out);
  PATTERN_DECL_NODE(d_ele_x);
  PATTERN_DECL_NODE(d_ele_y);
  PATTERN_DECL_NODE(ele_y);
};
M
Michal Gallus 已提交
927

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
// The following patterns are used to fuse linear and act (ReLu or GeLU)
// formula: act(F.linear(x))
// op: matmul_v2 + elementwise_add + act
// named nodes: matmul, elementwise_add, act
//              matmul_w, matmul_out
//              ele_bias, elewise_add_out, act_out
struct LinearAct : public PatternBase {
  LinearAct(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "linear_act") {}

  PDNode* operator()(PDNode* x,
                     const std::unordered_set<std::string>& act_types,
                     bool with_grad_link, bool is_act_grad_x_from_act);

  // declare operator node's name
  PATTERN_DECL_NODE(matmul);
  PATTERN_DECL_NODE(ele_add);
  PATTERN_DECL_NODE(act);
  PATTERN_DECL_NODE(act_grad);
  // declare variable node's name
  PATTERN_DECL_NODE(matmul_w);
  PATTERN_DECL_NODE(matmul_out);
  PATTERN_DECL_NODE(elewise_add_out);
  PATTERN_DECL_NODE(ele_bias);
  PATTERN_DECL_NODE(act_out);
};

// The following patterns are used to fuse linear_grad and act_grad (ReLu or
// GeLU)
// formula: the backward of F.linear( act(x) )
// op: elementwise_add_grad + matmul_v2_grad + act_grad
// named nodes: ele_add_grad, matmul_grad, act_grad
//              ele_grad_bias, ele_grad_dx, ele_grad_dbias
//              matmul_grad_x, matmul_grad_dx, matmul_grad_dx
//              matmul_grad_dw, act_grad_dx
struct ElewiseAddMatmulAct : public PatternBase {
  ElewiseAddMatmulAct(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "elewiseadd_matmul_act") {}

  PDNode* operator()(PDNode* x,
                     const std::unordered_set<std::string>& act_grad_types,
                     bool without_x_gradient, bool is_act_grad_x_from_act);

  // declare operator node's name
  PATTERN_DECL_NODE(ele_add_grad);
  PATTERN_DECL_NODE(matmul_grad);
  PATTERN_DECL_NODE(act_grad);
  // declare variable node's name
  PATTERN_DECL_NODE(ele_out);
  PATTERN_DECL_NODE(ele_grad_bias);
  PATTERN_DECL_NODE(ele_grad_dx);
  PATTERN_DECL_NODE(ele_grad_dbias);
  PATTERN_DECL_NODE(matmul_grad_x);
  PATTERN_DECL_NODE(matmul_grad_w);
  PATTERN_DECL_NODE(matmul_grad_dx);
  PATTERN_DECL_NODE(matmul_grad_dw);
  PATTERN_DECL_NODE(act_grad_dx);
};

M
Michal Gallus 已提交
987 988 989 990 991 992 993 994 995 996
// Conv with Elementwise_add as bias
// op: conv + elementwise_add
// named nodes:
// conv_input, conv_weight,
// conv_out, conv,
// eltwise_bias, eltwise_out,
// elementwise_add
struct ConvBias : public PatternBase {
  ConvBias(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "conv_bias") {}
997
  PDNode* operator()(PDNode* conv_input, std::string conv_type = "conv2d");
M
Michal Gallus 已提交
998 999 1000 1001 1002 1003 1004 1005 1006
  // declare operator node's name
  PATTERN_DECL_NODE(conv);
  PATTERN_DECL_NODE(eltwise);
  // declare variable node's name
  PATTERN_DECL_NODE(conv_weight);
  PATTERN_DECL_NODE(conv_out);
  PATTERN_DECL_NODE(eltwise_bias);
  PATTERN_DECL_NODE(eltwise_out);
};
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016
// Convolution op
// Forward pass for convolution.
// conv_input, conv_bias and conv_filter are inputs.
// conv_output is a result of the operator.
// residual_data is data used by skip connection.
// If residual connection fusion is on, the formula is:
// conv_output = conv_op(conv_filter, conv_input, conv_bias)
//             + conv_residual_data
// If the fusion is off, conv_residual_data is not added.
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
struct Conv : public PatternBase {
  Conv(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "convolution") {}

  PDNode* operator()();

  PATTERN_DECL_NODE(conv_op);
  PATTERN_DECL_NODE(conv_input);
  PATTERN_DECL_NODE(conv_filter);
  PATTERN_DECL_NODE(conv_residual_data);
  PATTERN_DECL_NODE(conv_output);
};

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
// Convolution op with residual data
struct ConvResidual : public PatternBase {
  ConvResidual(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "conv_residual") {}

  PDNode* operator()(bool with_residual_data);

  PATTERN_DECL_NODE(conv_op);
  PATTERN_DECL_NODE(conv_input);
  PATTERN_DECL_NODE(conv_filter);
  PATTERN_DECL_NODE(conv_residual_data);
  PATTERN_DECL_NODE(conv_output);
};

// Pool op
// Forward pass for pooling.
// pool_input is the input.
// pool_output is a result of the operator.
struct Pool : public PatternBase {
  Pool(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "pooling") {}

  PDNode* operator()();

  PATTERN_DECL_NODE(pool_op);
  PATTERN_DECL_NODE(pool_input);
  PATTERN_DECL_NODE(pool_output);
};

Z
Zuza 已提交
1059
// Elementwise ops
1060
// Forward pass for element-wise operators
1061
// elementwise_out is the result of the operator
Z
Zuza 已提交
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
struct Elementwise : public PatternBase {
  Elementwise(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "elementwise") {}

  PDNode* operator()(PDNode* x_var, PDNode* y_var,
                     const std::string elementwise_type);

  PATTERN_DECL_NODE(elementwise_op);
  PATTERN_DECL_NODE(elementwise_x);
  PATTERN_DECL_NODE(elementwise_y);
  PATTERN_DECL_NODE(elementwise_out);
1073
};
1074

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
// Residual Elementwise ops
// This pattern allows operator output to be X or Y
// and residual data Y or X, based on as_x flag
struct ResidualElementwise : public PatternBase {
  ResidualElementwise(PDPattern* pattern, const std::string& name_scope,
                      bool as_x)
      : PatternBase(pattern, name_scope, "residual_elementwise") {}
  PDNode* operator()(PDNode* op_var, PDNode* residual_var,
                     const std::string elementwise_type, bool as_x);

  PATTERN_DECL_NODE(operator_output);
  PATTERN_DECL_NODE(residual_data);
  PATTERN_DECL_NODE(elementwise_op);
  PATTERN_DECL_NODE(elementwise_out);
};

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
// Transpose op
// Forward pass for transpose.
// transpose_out is a result of the operator.
struct Transpose : public PatternBase {
  Transpose(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "transpose2") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(prev_op);
  PATTERN_DECL_NODE(transpose_in);
  PATTERN_DECL_NODE(transpose_op);
  PATTERN_DECL_NODE(transpose_out);
};

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
// Reshape op
// Forward pass for reshape.
// reshape_out is a result of the operator.
struct Reshape : public PatternBase {
  Reshape(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "reshape2") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(prev_op);
  PATTERN_DECL_NODE(reshape_in);
  PATTERN_DECL_NODE(reshape_op);
  PATTERN_DECL_NODE(reshape_out);
};
Z
Zuza 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
// Slice op
// Forward pass for slice.
// slice_out is a result of the operator.
struct Slice : public PatternBase {
  Slice(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "slice") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(prev_op);
  PATTERN_DECL_NODE(slice_in);
  PATTERN_DECL_NODE(slice_op);
  PATTERN_DECL_NODE(slice_out);
};
1131

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
// Nearest Interp op
// Forward pass for nearest_interp.
// nearest_interp_out is a result of the operator.
struct NearestInterp : public PatternBase {
  NearestInterp(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "nearest_interp") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(prev_op);
  PATTERN_DECL_NODE(nearest_interp_in);
  PATTERN_DECL_NODE(nearest_interp_op);
  PATTERN_DECL_NODE(nearest_interp_out);
};

1146 1147 1148 1149
// Matmul op
// Forward pass for matmul.
struct Matmul : public PatternBase {
  Matmul(PDPattern* pattern, const std::string& name_scope)
1150 1151 1152 1153 1154 1155 1156 1157 1158
      : PatternBase(pattern, name_scope, "matmul") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(matmul_in_x);
  PATTERN_DECL_NODE(matmul_in_y);
  PATTERN_DECL_NODE(matmul_op);
  PATTERN_DECL_NODE(matmul_out);
};

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
// MatmulV2: tensor * weight
struct MatmulV2Weight : public PatternBase {
  MatmulV2Weight(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "matmul_v2_weight") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(matmul_v2_in_x);
  PATTERN_DECL_NODE(matmul_v2_in_y);
  PATTERN_DECL_NODE(matmul_v2_op);
  PATTERN_DECL_NODE(matmul_v2_out);
};

// MatmulV2: tensor * tensor or tensor * weight
1172 1173 1174 1175 1176
struct MatmulV2 : public PatternBase {
  MatmulV2(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "matmul_v2") {}

  PDNode* operator()();
1177 1178 1179 1180
  PATTERN_DECL_NODE(matmul_v2_in_x);
  PATTERN_DECL_NODE(matmul_v2_in_y);
  PATTERN_DECL_NODE(matmul_v2_op);
  PATTERN_DECL_NODE(matmul_v2_out);
1181 1182
};

H
heliqi 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
// Matmul + scale
// Forward pass.
struct MatmulScale : public PatternBase {
  MatmulScale(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "matmul_scale") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(matmul_in_x);
  PATTERN_DECL_NODE(matmul_in_y);
  PATTERN_DECL_NODE(matmul_op);
  PATTERN_DECL_NODE(scale_in_x);
  PATTERN_DECL_NODE(scale_op);
  PATTERN_DECL_NODE(scale_out);
};

// Matmul_v2 + scale
// Forward pass.
struct MatmulV2Scale : public PatternBase {
  MatmulV2Scale(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "matmul_v2_scale") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(matmul_v2_in_x);
  PATTERN_DECL_NODE(matmul_v2_in_y);
  PATTERN_DECL_NODE(matmul_v2_op);
  PATTERN_DECL_NODE(scale_in_x);
  PATTERN_DECL_NODE(scale_op);
  PATTERN_DECL_NODE(scale_out);
};

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
// Squeeze2 + Matmul
// Forward pass.
struct Squeeze2Matmul : public PatternBase {
  Squeeze2Matmul(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "squeeze2_matmul") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(squeeze2_in_x);
  PATTERN_DECL_NODE(squeeze2_op);
  PATTERN_DECL_NODE(matmul_in_x);
  PATTERN_DECL_NODE(matmul_in_y);
  PATTERN_DECL_NODE(matmul_op);
  PATTERN_DECL_NODE(matmul_out);
};

// Reshape2 + Matmul
// Forward pass.
struct Reshape2Matmul : public PatternBase {
  Reshape2Matmul(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "reshape2_matmul") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(reshape2_in_x);
  PATTERN_DECL_NODE(reshape2_op);
  PATTERN_DECL_NODE(matmul_in_x);
  PATTERN_DECL_NODE(matmul_in_y);
  PATTERN_DECL_NODE(matmul_op);
  PATTERN_DECL_NODE(matmul_out);
};

// Forward pass for two input ops and matmul op.
// matmul_out is a result of the operator.
struct MatmulWithInputOps : public PatternBase {
  MatmulWithInputOps(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "matmul_with_input_ops") {}
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257

  PDNode* operator()();
  PATTERN_DECL_NODE(prev_op_x);
  PATTERN_DECL_NODE(prev_op_y);
  PATTERN_DECL_NODE(matmul_in_x);
  PATTERN_DECL_NODE(matmul_in_y);
  PATTERN_DECL_NODE(matmul_op);
  PATTERN_DECL_NODE(matmul_out);
};

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
// Flatten2 + Matmul
// Forward pass.
struct Flatten2Matmul : public PatternBase {
  Flatten2Matmul(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "flatten2_matmul") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(flatten2_in_x);
  PATTERN_DECL_NODE(flatten2_op);
  PATTERN_DECL_NODE(matmul_in_x);
  PATTERN_DECL_NODE(matmul_in_y);
  PATTERN_DECL_NODE(matmul_op);
  PATTERN_DECL_NODE(matmul_out);
};

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
// Concat op
// Forward pass for concat.
// concat_out is a result of the operator.
struct Concat : public PatternBase {
  Concat(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "concat") {}

  PDNode* operator()();

  PATTERN_DECL_NODE(concat_op);
  PATTERN_DECL_NODE(concat_out);
};

1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
// Concat + ReLU
// named nodes:
// concat_op, concat_out, relu_op, relu_out
struct ConcatReLU : public PatternBase {
  ConcatReLU(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "concat_relu") {}

  PDNode* operator()();

  PATTERN_DECL_NODE(concat_op);
  PATTERN_DECL_NODE(concat_out);
  PATTERN_DECL_NODE(relu_op);
  PATTERN_DECL_NODE(relu_out);
};

// Conv + Concat + ReLU
// named nodes:
// conv_op, conv_out
// concat_op, concat_out, relu_op, relu_out
struct ConvConcatReLU : public PatternBase {
  ConvConcatReLU(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "conv_concat_relu") {}

  PDNode* operator()();

  PATTERN_DECL_NODE(conv_op);
  PATTERN_DECL_NODE(conv_out);
  PATTERN_DECL_NODE(concat_op);
  PATTERN_DECL_NODE(concat_out);
  PATTERN_DECL_NODE(relu_op);
  PATTERN_DECL_NODE(relu_out);
};

J
joanna.wozna.intel 已提交
1319
// Op + Requant
1320
// named nodes:
J
joanna.wozna.intel 已提交
1321
// any_op, any_out
1322
// requant_op, requant_out
J
joanna.wozna.intel 已提交
1323 1324 1325
struct OpRequant : public PatternBase {
  OpRequant(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "op_requant") {}
1326 1327 1328

  PDNode* operator()();

J
joanna.wozna.intel 已提交
1329 1330
  PATTERN_DECL_NODE(any_op);
  PATTERN_DECL_NODE(requant_in);
1331 1332 1333 1334
  PATTERN_DECL_NODE(requant_op);
  PATTERN_DECL_NODE(requant_out);
};

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
// Requant + Op
// named nodes:
// requant_in, requant_op,
// requant_out, any_op
struct RequantOp : public PatternBase {
  RequantOp(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "requant_op") {}

  PDNode* operator()();

  PATTERN_DECL_NODE(any_op);
  PATTERN_DECL_NODE(requant_in);
  PATTERN_DECL_NODE(requant_op);
  PATTERN_DECL_NODE(requant_out);
};

1351
// Op + Dequant
1352
// named nodes:
1353
// any_op, dequant_in
1354
// dequant_op, dequant_out
1355 1356 1357
struct OpDequant : public PatternBase {
  OpDequant(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "op_dequant") {}
1358 1359 1360

  PDNode* operator()();

1361 1362
  PATTERN_DECL_NODE(any_op);
  PATTERN_DECL_NODE(dequant_in);
1363 1364 1365 1366
  PATTERN_DECL_NODE(dequant_op);
  PATTERN_DECL_NODE(dequant_out);
};

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
// Dequantize + Scale
struct DequantScale : public PatternBase {
  DequantScale(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "dequant_scale") {}

  PDNode* operator()();

  PATTERN_DECL_NODE(dequant_op);
  PATTERN_DECL_NODE(dequant_out);
  PATTERN_DECL_NODE(scale_op);
  PATTERN_DECL_NODE(scale_out);
};

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
// Scale + Quantize
struct ScaleQuant : public PatternBase {
  ScaleQuant(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "scale_quant") {}

  PDNode* operator()();

  PATTERN_DECL_NODE(scale_in);
  PATTERN_DECL_NODE(scale_op);
  PATTERN_DECL_NODE(quant_in);
  PATTERN_DECL_NODE(quant_op);
};

// Quantize + Conv2d
struct QuantConv : public PatternBase {
  QuantConv(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "quant_conv") {}

  PDNode* operator()();

  PATTERN_DECL_NODE(quant_in);
  PATTERN_DECL_NODE(quant_op);
  PATTERN_DECL_NODE(conv_in);
  PATTERN_DECL_NODE(conv_op);
};

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
// Scale + Matmul
struct ScaleMatmul : public PatternBase {
  ScaleMatmul(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "scale_matmul") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(scale_in);
  PATTERN_DECL_NODE(scale_op);
  PATTERN_DECL_NODE(scale_out);
  PATTERN_DECL_NODE(matmul_op);
};

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
// PriorBox operator
// operator: prior_box_op
// inputs: prior_box_input, prior_box_image
// outputs: prior_box_boxes, prior_box_variances
struct PriorBox : public PatternBase {
  PriorBox(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "PriorBox") {}

  PDNode* operator()();

  PATTERN_DECL_NODE(prior_box_op);
  PATTERN_DECL_NODE(prior_box_input);
  PATTERN_DECL_NODE(prior_box_image);
  PATTERN_DECL_NODE(prior_box_boxes);
  PATTERN_DECL_NODE(prior_box_variances);
};

1435
// Conv + ElementwiseAdd + an activation
1436
// This pattern can further fuse the conv related ops after the conv+bn fusion.
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
struct ConvElementwiseaddAct : public PatternBase {
  ConvElementwiseaddAct(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "conv_elementwiseadd_act") {}

  PDNode* operator()(PDNode* conv_in);

  PATTERN_DECL_NODE(conv_op);
  PATTERN_DECL_NODE(conv_out);
  PATTERN_DECL_NODE(conv_filter);

  PATTERN_DECL_NODE(elementwise_add_op);
  PATTERN_DECL_NODE(elementwise_add_in_y);  // input
  PATTERN_DECL_NODE(elementwise_add_out);

  PATTERN_DECL_NODE(act_op);
  PATTERN_DECL_NODE(act_out);
};

// Conv + ElementwiseAdd + ElementwiseAdd + Activation
struct ConvElementwiseadd2Act : public PatternBase {
  ConvElementwiseadd2Act(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope,
                    "conv_elementwiseadd2_elementwiseadd_act") {}

  PDNode* operator()(PDNode* conv_in);

  PATTERN_DECL_NODE(conv_op);
  PATTERN_DECL_NODE(conv_filter);
  PATTERN_DECL_NODE(conv_out);

  PATTERN_DECL_NODE(elementwise_add_op);
  PATTERN_DECL_NODE(elementwise_add_in_y);  // input
  PATTERN_DECL_NODE(elementwise_add_out);

  PATTERN_DECL_NODE(elementwise_add_op_1);
  PATTERN_DECL_NODE(elementwise_add_in_y_1);  // input
  PATTERN_DECL_NODE(elementwise_add_out_1);

  PATTERN_DECL_NODE(act_op);
  PATTERN_DECL_NODE(act_out);
};

N
nhzlx 已提交
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
// Conv + ElementwiseAdd
// This pattern should be used after ConvElementwiseadd2Act or
// ConvElementwiseadd pass
struct ConvElementwiseadd : public PatternBase {
  ConvElementwiseadd(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "conv_elementwiseadd") {}

  PDNode* operator()(PDNode* conv_in);

  PATTERN_DECL_NODE(conv_op);
  PATTERN_DECL_NODE(conv_out);
  PATTERN_DECL_NODE(conv_filter);

  PATTERN_DECL_NODE(elementwise_add_op);
  PATTERN_DECL_NODE(elementwise_add_in_y);
  PATTERN_DECL_NODE(elementwise_add_out);
};

N
nhzlx 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
// Conv with affine_channel
// op: conv + (elementwise_add +) affine_channel
// named nodes:
// conv_weight, conv_out, conv,
// ac_x, ac_scale, ac_bias
// affine_channel, ac_out
struct ConvAffineChannel : public PatternBase {
  ConvAffineChannel(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "conv_affine_channel") {}

  PDNode* operator()(PDNode* conv_input, bool with_eltwise_add);

  // declare operator node's name
  PATTERN_DECL_NODE(conv);
  PATTERN_DECL_NODE(affine_channel);
  PATTERN_DECL_NODE(eltwise);  // ELEMENTWISE_ADD
  // CONV inputs
  PATTERN_DECL_NODE(conv_weight);  // Filter
  // CONV outputs
  PATTERN_DECL_NODE(conv_out);  // tmp
  // ELTWISE inputs
  PATTERN_DECL_NODE(eltwise_y_in);
  // ELTWISE outputs
  PATTERN_DECL_NODE(eltwise_out);  // tmp

  // AC(Affine_Channel) inputs
  PATTERN_DECL_NODE(ac_scale);
  PATTERN_DECL_NODE(ac_bias);
  // AC outputs
  PATTERN_DECL_NODE(ac_out);  // Out
};

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
// Dequantize + Quantize + anyOP
// This pattern is used for squashing the dequantize-quantize pairs.
struct DequantQuantAny : public PatternBase {
  DequantQuantAny(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "dequant_quant_any") {}
  PDNode* operator()();

  PATTERN_DECL_NODE(dequant_in);
  PATTERN_DECL_NODE(dequant_op);
  PATTERN_DECL_NODE(dequant_out);
  PATTERN_DECL_NODE(quant_op);
  PATTERN_DECL_NODE(quant_out);
  PATTERN_DECL_NODE(next_op);
};

// Dequantize + anyOP
// This quantize is used for getting number of ops the Dequantize's
// output is an input to.
struct DequantAny : public PatternBase {
  DequantAny(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "dequant_any") {}
  PDNode* operator()();

  PATTERN_DECL_NODE(dequant_op);
  PATTERN_DECL_NODE(dequant_out);
  PATTERN_DECL_NODE(next_op);
};

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
// anyOp + more then one quantize op
// This pattern is used for squashing multiple quantize with the same scale.
struct MultipleQuantize : public PatternBase {
  MultipleQuantize(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "multiple_quantize") {}
  PDNode* operator()();

  PATTERN_DECL_NODE(prev_out);
};

1567 1568 1569 1570 1571 1572 1573 1574 1575
struct QuantizePlacement : public PatternBase {
  QuantizePlacement(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "quantize_placement") {}
  PDNode* operator()(
      const std::unordered_set<std::string>& quantize_enabled_op_types);

  PATTERN_DECL_NODE(op);
};

1576 1577 1578 1579 1580 1581
struct Bfloat16Placement : public PatternBase {
  Bfloat16Placement(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "bfloat16_placement") {}
  PDNode* operator()(
      const std::unordered_set<std::string>& bfloat16_enabled_op_types);

1582
  PATTERN_DECL_NODE(op_in);
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
  PATTERN_DECL_NODE(op);
};

struct OrphanedBfloat16 : public PatternBase {
  OrphanedBfloat16(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "orphaned_bfloat16") {}
  PDNode* operator()();

  PATTERN_DECL_NODE(prev_op);
  PATTERN_DECL_NODE(prev_out);
  PATTERN_DECL_NODE(op);
  PATTERN_DECL_NODE(op_out);
  PATTERN_DECL_NODE(next_op);
};

W
wenbin 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
struct UnsupportedBfloat16 : public PatternBase {
  UnsupportedBfloat16(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "unsupported_bfloat16") {}
  PDNode* operator()();

  PATTERN_DECL_NODE(prev_op);
  PATTERN_DECL_NODE(prev_out);
  PATTERN_DECL_NODE(op);
};

T
Tomasz Socha 已提交
1608 1609 1610
struct Bloat16Ops : public PatternBase {
  Bloat16Ops(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "many_bfloat16_ops") {}
1611 1612 1613 1614 1615 1616

  PDNode* operator()();

  PATTERN_DECL_NODE(op);
};

1617 1618 1619 1620 1621 1622 1623
// Pattern used for enforcing inplace computation for in-place computation
// supporting DNNL ops. softmax, batch_norm and layer_norm
struct MKLDNNInPlace : public PatternBase {
  MKLDNNInPlace(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "mkldnn_inplace") {}
  PDNode* operator()();

1624
  // MKL-DNN's in-place ops: BatchNorm, Softmax, Elementwise_add
1625 1626 1627 1628
  PATTERN_DECL_NODE(inplace_to_be_op);
  PATTERN_DECL_NODE(inplace_to_be_op_in);
  PATTERN_DECL_NODE(inplace_to_be_op_out);
  PATTERN_DECL_NODE(next_op);
1629
  PATTERN_DECL_NODE(next_op_out);
1630 1631
};

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
struct TransposeFlattenConcat : public PatternBase {
  TransposeFlattenConcat(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "transpose_flatten_concat") {}

  PDNode* operator()(std::vector<PDNode*> conv_inputs, int times);

  std::string GetNodeName(const std::string& op_type) {
    return PDNodeName(name_scope_, repr_, id_, op_type);
  }

  PDNode* GetPDNode(const std::string& op_type) {
    return pattern->RetrieveNode(GetNodeName(op_type));
  }
};

1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
struct DeleteQuantOpFuse : public PatternBase {
  DeleteQuantOpFuse(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "delete_quant_fuse") {}

  void operator()(PDNode* input_act_node, const std::string& quant_type);

  std::string GetNodeName(const std::string& op_type) {
    return PDNodeName(name_scope_, repr_, id_, op_type);
  }

  PDNode* GetPDNode(const std::string& op_type) {
    return pattern->RetrieveNode(GetNodeName(op_type));
  }
};

struct DequantOpFuse : public PatternBase {
  DequantOpFuse(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "dequant_fuse") {}

  void operator()(PDNode* quant_op_input, const std::string& quantized_op_type,
                  const std::string& dequant_type,
                  const std::string& weight_name);
N
nhzlx 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

  std::string GetNodeName(const std::string& op_type) {
    return PDNodeName(name_scope_, repr_, id_, op_type);
  }

  PDNode* GetPDNode(const std::string& op_type) {
    return pattern->RetrieveNode(GetNodeName(op_type));
  }
};

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
struct ShuffleChannelPattern : public PatternBase {
  ShuffleChannelPattern(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "shufflechannel_pattern") {}

  void operator()(PDNode* reshape1_in);

  PATTERN_DECL_NODE(reshape1_op);
  PATTERN_DECL_NODE(reshape1_out);

  PATTERN_DECL_NODE(transpose_op);
  PATTERN_DECL_NODE(transpose_out);
  PATTERN_DECL_NODE(reshape2_op);
  PATTERN_DECL_NODE(reshape2_out);
};

D
denglin-github 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
struct DeleteDropoutOpPattern : public PatternBase {
  DeleteDropoutOpPattern(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "delete_dropout_op_pattern") {}

  void operator()();

  PATTERN_DECL_NODE(any_op_out);
  PATTERN_DECL_NODE(dropout_op);
  PATTERN_DECL_NODE(dropout_op_out);
  PATTERN_DECL_NODE(dropout_op_outmask);
  PATTERN_DECL_NODE(any_op2);
};

1707 1708 1709 1710
struct DeleteQuantDequantOpPattern : public PatternBase {
  DeleteQuantDequantOpPattern(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "delete_quantdequant_op_pattern") {}

1711
  void operator()(PDNode* input_node, const std::string& quantdequant_types);
1712 1713 1714 1715 1716 1717 1718

  PATTERN_DECL_NODE(quant_dequant_op_inscale);
  PATTERN_DECL_NODE(quant_dequant_op);
  PATTERN_DECL_NODE(quant_dequant_op_outscale);
  PATTERN_DECL_NODE(quant_dequant_op_out);
};

1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
struct DeleteQuantDequantFilterOpPattern : public PatternBase {
  DeleteQuantDequantFilterOpPattern(PDPattern* pattern,
                                    const std::string& name_scope)
      : PatternBase(pattern, name_scope,
                    "delete_quantdequant_filter_op_pattern") {}

  void operator()();

  PATTERN_DECL_NODE(quant_dequant_op_x);
  PATTERN_DECL_NODE(quant_dequant_op);
  PATTERN_DECL_NODE(quant_dequant_op_outscale);
  PATTERN_DECL_NODE(quant_dequant_op_out);
  PATTERN_DECL_NODE(any_op2);
};

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
struct DeleteWeightQuantDequantLinearOpPattern : public PatternBase {
  DeleteWeightQuantDequantLinearOpPattern(PDPattern* pattern,
                                          const std::string& name_scope)
      : PatternBase(pattern, name_scope,
                    "delete_weight_quant_dequant_linear_op_pattern") {}

  void operator()();

  PATTERN_DECL_NODE(weight_dequantize_linear_op_x);
  PATTERN_DECL_NODE(weight_dequantize_linear_op_scale);
  PATTERN_DECL_NODE(weight_dequantize_linear_op);
  PATTERN_DECL_NODE(weight_dequantize_linear_op_out);
  PATTERN_DECL_NODE(any_op2);
};

struct DeleteQuantDequantLinearOpPattern : public PatternBase {
  DeleteQuantDequantLinearOpPattern(PDPattern* pattern,
                                    const std::string& name_scope)
      : PatternBase(pattern, name_scope,
                    "delete_quant_dequant_linear_op_pattern") {}

  void operator()();

  PATTERN_DECL_NODE(quantize_linear_op_x);
  PATTERN_DECL_NODE(quantize_linear_op_scale);
  PATTERN_DECL_NODE(quantize_linear_op);
  PATTERN_DECL_NODE(quantize_linear_op_out);
  PATTERN_DECL_NODE(dequantize_linear_op);
  // PATTERN_DECL_NODE(dequantize_linear_op_scale);  // Can not add this node.
  // Todo: Wangzheee
  PATTERN_DECL_NODE(dequantize_linear_op_out);
  PATTERN_DECL_NODE(any_op2);
};

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
// Reshape + Transpose + Matmul
// named nodes:
// reshape_op, reshape_out, reshape_xshape,
// transpose_op, transpose_out, transpose_xshape,
// matmul_op, matmul_out
struct ReshapeTransposeMatmulPattern : public PatternBase {
  ReshapeTransposeMatmulPattern(PDPattern* pattern,
                                const std::string& name_scope)
      : PatternBase(pattern, name_scope, "reshape_transpose_matmul") {}

1778 1779
  PDNode* operator()(const std::string& op_name, bool with_reshape_xshape,
                     bool with_transpose_xshape);
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

  PATTERN_DECL_NODE(reshape_in);
  PATTERN_DECL_NODE(reshape_op);
  PATTERN_DECL_NODE(reshape_out);
  PATTERN_DECL_NODE(reshape_xshape);
  PATTERN_DECL_NODE(transpose_op);
  PATTERN_DECL_NODE(transpose_out);
  PATTERN_DECL_NODE(transpose_xshape);
  PATTERN_DECL_NODE(matmul_op);
  PATTERN_DECL_NODE(matmul_out);
};

1792 1793 1794 1795 1796 1797
// Matmul + Transpose + Reshape
struct MatmulTransposeReshapePattern : public PatternBase {
  MatmulTransposeReshapePattern(PDPattern* pattern,
                                const std::string& name_scope)
      : PatternBase(pattern, name_scope, "matmul_transpose_reshape") {}

1798
  PDNode* operator()(const std::string& op_name);
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809

  PATTERN_DECL_NODE(matmul_op);
  PATTERN_DECL_NODE(matmul_out);
  PATTERN_DECL_NODE(transpose_op);
  PATTERN_DECL_NODE(transpose_out);
  PATTERN_DECL_NODE(transpose_out_xshape);
  PATTERN_DECL_NODE(reshape_op);
  PATTERN_DECL_NODE(reshape_out);
  PATTERN_DECL_NODE(reshape_out_xshape);
};

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
// fusion_gru op
// Forward pass for fusion_gru.
// fusion_gru out is a result of the operator.
struct FusionGru : public PatternBase {
  FusionGru(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "fusion_gru") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(op);
  PATTERN_DECL_NODE(x);
  PATTERN_DECL_NODE(weight_h);
  PATTERN_DECL_NODE(weight_x);
  PATTERN_DECL_NODE(out);
};

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
// fusion_lstm op
// Forward pass for fusion_lstm.
// fusion_lstm out is a result of the operator.
struct FusionLSTM : public PatternBase {
  FusionLSTM(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "fusion_lstm") {}
  // TODO(lidanqing): Is it enough to detect fusion_lstm with these things
  PDNode* operator()();

  // declare op
  PATTERN_DECL_NODE(op);

  // declate inputs
  PATTERN_DECL_NODE(x);
  PATTERN_DECL_NODE(weight_h);
  PATTERN_DECL_NODE(weight_x);

  // decalre outputs
  PATTERN_DECL_NODE(hidden);
  PATTERN_DECL_NODE(cell);
};

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
// two concatenated fusion_gru ops
// Forward pass for fusion of two concatenated fusion_gru ops.
// concat_out is a result of the operator().
struct TwoFusionGruConcat : public PatternBase {
  TwoFusionGruConcat(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "bi_fusion_gru") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(x);
  PATTERN_DECL_NODE(gru1);
  PATTERN_DECL_NODE(gru2);
  PATTERN_DECL_NODE(wh1);
  PATTERN_DECL_NODE(wh2);
  PATTERN_DECL_NODE(wx1);
  PATTERN_DECL_NODE(wx2);
  PATTERN_DECL_NODE(b1);
  PATTERN_DECL_NODE(b2);
  PATTERN_DECL_NODE(h1);
  PATTERN_DECL_NODE(h2);
  PATTERN_DECL_NODE(concat);
  PATTERN_DECL_NODE(out);
};

1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
// two subsequent bi_fusion_gru ops
// Forward pass for fusion of two subsequent fusion_gru ops.
// Hidden of the last fusion_gru op is a result of the operator().
struct MultiGruSeq : public PatternBase {
  MultiGruSeq(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "multi_gru_seq") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(x);
  PATTERN_DECL_NODE(gru1);
  PATTERN_DECL_NODE(wx11);
  PATTERN_DECL_NODE(wx12);
  PATTERN_DECL_NODE(wh11);
  PATTERN_DECL_NODE(wh12);
  PATTERN_DECL_NODE(b11);
  PATTERN_DECL_NODE(b12);
  PATTERN_DECL_NODE(h1);
  PATTERN_DECL_NODE(gru2);
  PATTERN_DECL_NODE(wx21);
  PATTERN_DECL_NODE(wx22);
  PATTERN_DECL_NODE(wh21);
  PATTERN_DECL_NODE(wh22);
  PATTERN_DECL_NODE(b21);
  PATTERN_DECL_NODE(b22);
  PATTERN_DECL_NODE(h2);
};

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
// multi_gru op
// Quantization pass for multi_gru op.
// Hidden of the multi_gru op is a result of the operator().
struct MultiGru : public PatternBase {
  MultiGru(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "multi_gru") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(x);
  PATTERN_DECL_NODE(gru);
  PATTERN_DECL_NODE(wx);
  PATTERN_DECL_NODE(wh);
  PATTERN_DECL_NODE(h);
};

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
//
// \brief   Pattern looking for subgraph representing layer normalization
//          operation.
//
struct LayerNorm : public PatternBase {
  LayerNorm(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "layer_norm") {}

  PDNode* operator()();

  PATTERN_DECL_NODE(x);
  PATTERN_DECL_NODE(x_mean);
  PATTERN_DECL_NODE(x_mean_out);
  PATTERN_DECL_NODE(x_sub_mean);
  PATTERN_DECL_NODE(x_sub_mean_out);
  PATTERN_DECL_NODE(sqr_pow);
  PATTERN_DECL_NODE(x_sub_mean_sqr);
  PATTERN_DECL_NODE(x_sub_mean_sqr_out);
  PATTERN_DECL_NODE(std_dev);
  PATTERN_DECL_NODE(std_dev_out);
  PATTERN_DECL_NODE(eps);
  PATTERN_DECL_NODE(std_dev_eps);
  PATTERN_DECL_NODE(std_dev_eps_out);
  PATTERN_DECL_NODE(std_dev_eps_sqrt);
  PATTERN_DECL_NODE(std_dev_eps_sqrt_out);
  PATTERN_DECL_NODE(division);
  PATTERN_DECL_NODE(division_out);
  PATTERN_DECL_NODE(gamma);
  PATTERN_DECL_NODE(scale);
  PATTERN_DECL_NODE(scale_out);
  PATTERN_DECL_NODE(beta);
  PATTERN_DECL_NODE(shift);
  PATTERN_DECL_NODE(shift_out);
};

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
// Add support int8 flag
struct AddSupportInt8 : public PatternBase {
  AddSupportInt8(PDPattern* pattern, const std::string& name_scope)
      : PatternBase(pattern, name_scope, "Add_support_int8") {}

  PDNode* operator()();
  PATTERN_DECL_NODE(quant_op);
  PATTERN_DECL_NODE(quant_out);
};

1957
}  // namespace patterns
1958

Y
Yan Chunwei 已提交
1959
// Link two ir::Nodes from each other.
1960 1961 1962 1963
#define IR_NODE_LINK_TO(a, b) \
  a->outputs.push_back(b);    \
  b->inputs.push_back(a);

C
chengduo 已提交
1964 1965 1966 1967 1968 1969
// Set the out_var as the output of the op
#define IR_OP_VAR_LINK(op, out_var) \
  op->outputs.push_back(out_var);   \
  out_var->inputs.clear();          \
  out_var->inputs.push_back(op);

1970 1971 1972
}  // namespace ir
}  // namespace framework
}  // namespace paddle