float16_test.cu 17.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
K
Kexin Zhao 已提交
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#include "paddle/fluid/platform/float16.h"
K
Kexin Zhao 已提交
13

P
peizhilin 已提交
14
#define GLOG_NO_ABBREVIATED_SEVERITIES  // msvc conflict logging with windows.h
15
#include <glog/logging.h>
K
Kexin Zhao 已提交
16
#include <gtest/gtest.h>
17 18
#include <bitset>
#include <iostream>
K
Kexin Zhao 已提交
19

K
kexinzhao 已提交
20 21
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
22
#include "paddle/fluid/platform/eigen_ext.h"
23
#include "paddle/fluid/platform/enforce.h"
K
Kexin Zhao 已提交
24

25
#define ARITHMETIC_KERNEL(op_type, sign)                                 \
26
  __global__ void op_type(const half *in1, const half *in2, half *out) { \
27
    out[0] = in1[0] sign in2[0];                                         \
K
Kexin Zhao 已提交
28 29
  }

30
#define COMPOUND_KERNEL(op_type, sign) \
31
  __global__ void op_type(half *in1, const half *in2) { in1[0] sign in2[0]; }
K
Kexin Zhao 已提交
32

33
#define COMPARISON_KERNEL(op_type, sign)                                 \
34
  __global__ void op_type(const half *in1, const half *in2, bool *out) { \
35
    out[0] = in1[0] sign in2[0];                                         \
K
Kexin Zhao 已提交
36 37
  }

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
#ifdef PADDLE_WITH_HIP
#define ARITHMETIC_KERNEL_LAUNCH(op_type)                                     \
  void Test##op_type(float v_in1, float v_in2, float v_out) {                 \
    LOG(INFO) << "Test " << #op_type << " on GPU!";                           \
    half *in1, *in2, *out;                                                    \
    half *d_in1, *d_in2, *d_out;                                              \
    int size = sizeof(half);                                                  \
    hipMalloc(reinterpret_cast<void **>(&d_in1), size);                       \
    hipMalloc(reinterpret_cast<void **>(&d_in2), size);                       \
    hipMalloc(reinterpret_cast<void **>(&d_out), size);                       \
    in1 = reinterpret_cast<half *>(malloc(size));                             \
    in2 = reinterpret_cast<half *>(malloc(size));                             \
    out = reinterpret_cast<half *>(malloc(size));                             \
    in1[0] = half(float16(v_in1));                                            \
    in2[0] = half(float16(v_in2));                                            \
    hipMemcpy(d_in1, in1, size, hipMemcpyHostToDevice);                       \
    hipMemcpy(d_in2, in2, size, hipMemcpyHostToDevice);                       \
    hipLaunchKernelGGL(op_type, dim3(1), dim3(1), 0, 0, d_in1, d_in2, d_out); \
    hipMemcpy(out, d_out, size, hipMemcpyDeviceToHost);                       \
    EXPECT_EQ(static_cast<float>(float16(out[0])), v_out);                    \
    free(in1);                                                                \
    free(in2);                                                                \
    free(out);                                                                \
    hipFree(d_in1);                                                           \
    hipFree(d_in2);                                                           \
    hipFree(d_out);                                                           \
  }

#define COMPOUND_KERNEL_LAUNCH(op_type)                                \
  void Test##op_type(float v_in1, float v_in2, float v_out) {          \
    LOG(INFO) << "Test " << #op_type << " on GPU!";                    \
    half *in1, *in2;                                                   \
    half *d_in1, *d_in2;                                               \
    int size = sizeof(half);                                           \
    hipMalloc(reinterpret_cast<void **>(&d_in1), size);                \
    hipMalloc(reinterpret_cast<void **>(&d_in2), size);                \
    in1 = reinterpret_cast<half *>(malloc(size));                      \
    in2 = reinterpret_cast<half *>(malloc(size));                      \
    in1[0] = half(float16(v_in1));                                     \
    in2[0] = half(float16(v_in2));                                     \
    hipMemcpy(d_in1, in1, size, hipMemcpyHostToDevice);                \
    hipMemcpy(d_in2, in2, size, hipMemcpyHostToDevice);                \
    hipLaunchKernelGGL(op_type, dim3(1), dim3(1), 0, 0, d_in1, d_in2); \
    hipMemcpy(in1, d_in1, size, hipMemcpyDeviceToHost);                \
    EXPECT_EQ(static_cast<float>(float16(in1[0])), v_out);             \
    free(in1);                                                         \
    free(in2);                                                         \
    hipFree(d_in1);                                                    \
    hipFree(d_in2);                                                    \
  }

#define COMPARISON_KERNEL_LAUNCH(op_type)                                     \
  void Test##op_type(float v_in1, float v_in2, bool v_out) {                  \
    LOG(INFO) << "Test " << #op_type << " on GPU!";                           \
    half *in1, *in2;                                                          \
    half *d_in1, *d_in2;                                                      \
    bool *out, *d_out;                                                        \
    int size = sizeof(half);                                                  \
    hipMalloc(reinterpret_cast<void **>(&d_in1), size);                       \
    hipMalloc(reinterpret_cast<void **>(&d_in2), size);                       \
    hipMalloc(reinterpret_cast<void **>(&d_out), 1);                          \
    in1 = reinterpret_cast<half *>(malloc(size));                             \
    in2 = reinterpret_cast<half *>(malloc(size));                             \
    out = reinterpret_cast<bool *>(malloc(1));                                \
    in1[0] = half(float16(v_in1));                                            \
    in2[0] = half(float16(v_in2));                                            \
    hipMemcpy(d_in1, in1, size, hipMemcpyHostToDevice);                       \
    hipMemcpy(d_in2, in2, size, hipMemcpyHostToDevice);                       \
    hipLaunchKernelGGL(op_type, dim3(1), dim3(1), 0, 0, d_in1, d_in2, d_out); \
    hipMemcpy(out, d_out, 1, hipMemcpyDeviceToHost);                          \
    EXPECT_EQ(out[0], v_out);                                                 \
    free(in1);                                                                \
    free(in2);                                                                \
    free(out);                                                                \
    hipFree(d_in1);                                                           \
    hipFree(d_in2);                                                           \
    hipFree(d_out);                                                           \
  }
#else
K
Kexin Zhao 已提交
117 118 119
#define ARITHMETIC_KERNEL_LAUNCH(op_type)                     \
  void Test##op_type(float v_in1, float v_in2, float v_out) { \
    LOG(INFO) << "Test " << #op_type << " on GPU!";           \
120 121 122
    half *in1, *in2, *out;                                    \
    half *d_in1, *d_in2, *d_out;                              \
    int size = sizeof(half);                                  \
123 124 125 126 127 128
    cudaMalloc(reinterpret_cast<void **>(&d_in1), size);      \
    cudaMalloc(reinterpret_cast<void **>(&d_in2), size);      \
    cudaMalloc(reinterpret_cast<void **>(&d_out), size);      \
    in1 = reinterpret_cast<half *>(malloc(size));             \
    in2 = reinterpret_cast<half *>(malloc(size));             \
    out = reinterpret_cast<half *>(malloc(size));             \
129 130
    in1[0] = half(float16(v_in1));                            \
    in2[0] = half(float16(v_in2));                            \
K
Kexin Zhao 已提交
131 132 133 134
    cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice);     \
    cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice);     \
    op_type<<<1, 1>>>(d_in1, d_in2, d_out);                   \
    cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);     \
135
    EXPECT_EQ(static_cast<float>(float16(out[0])), v_out);    \
K
Kexin Zhao 已提交
136 137 138 139 140 141 142 143 144 145 146
    free(in1);                                                \
    free(in2);                                                \
    free(out);                                                \
    cudaFree(d_in1);                                          \
    cudaFree(d_in2);                                          \
    cudaFree(d_out);                                          \
  }

#define COMPOUND_KERNEL_LAUNCH(op_type)                       \
  void Test##op_type(float v_in1, float v_in2, float v_out) { \
    LOG(INFO) << "Test " << #op_type << " on GPU!";           \
147 148 149
    half *in1, *in2;                                          \
    half *d_in1, *d_in2;                                      \
    int size = sizeof(half);                                  \
150 151 152 153
    cudaMalloc(reinterpret_cast<void **>(&d_in1), size);      \
    cudaMalloc(reinterpret_cast<void **>(&d_in2), size);      \
    in1 = reinterpret_cast<half *>(malloc(size));             \
    in2 = reinterpret_cast<half *>(malloc(size));             \
154 155
    in1[0] = half(float16(v_in1));                            \
    in2[0] = half(float16(v_in2));                            \
K
Kexin Zhao 已提交
156 157 158 159
    cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice);     \
    cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice);     \
    op_type<<<1, 1>>>(d_in1, d_in2);                          \
    cudaMemcpy(in1, d_in1, size, cudaMemcpyDeviceToHost);     \
160
    EXPECT_EQ(static_cast<float>(float16(in1[0])), v_out);    \
K
Kexin Zhao 已提交
161 162 163 164 165 166 167 168 169
    free(in1);                                                \
    free(in2);                                                \
    cudaFree(d_in1);                                          \
    cudaFree(d_in2);                                          \
  }

#define COMPARISON_KERNEL_LAUNCH(op_type)                    \
  void Test##op_type(float v_in1, float v_in2, bool v_out) { \
    LOG(INFO) << "Test " << #op_type << " on GPU!";          \
170 171
    half *in1, *in2;                                         \
    half *d_in1, *d_in2;                                     \
K
Kexin Zhao 已提交
172
    bool *out, *d_out;                                       \
173
    int size = sizeof(half);                                 \
174 175 176 177 178 179
    cudaMalloc(reinterpret_cast<void **>(&d_in1), size);     \
    cudaMalloc(reinterpret_cast<void **>(&d_in2), size);     \
    cudaMalloc(reinterpret_cast<void **>(&d_out), 1);        \
    in1 = reinterpret_cast<half *>(malloc(size));            \
    in2 = reinterpret_cast<half *>(malloc(size));            \
    out = reinterpret_cast<bool *>(malloc(1));               \
180 181
    in1[0] = half(float16(v_in1));                           \
    in2[0] = half(float16(v_in2));                           \
K
Kexin Zhao 已提交
182 183 184 185 186 187 188 189 190 191 192 193
    cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice);    \
    cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice);    \
    op_type<<<1, 1>>>(d_in1, d_in2, d_out);                  \
    cudaMemcpy(out, d_out, 1, cudaMemcpyDeviceToHost);       \
    EXPECT_EQ(out[0], v_out);                                \
    free(in1);                                               \
    free(in2);                                               \
    free(out);                                               \
    cudaFree(d_in1);                                         \
    cudaFree(d_in2);                                         \
    cudaFree(d_out);                                         \
  }
194
#endif
K
Kexin Zhao 已提交
195 196

#ifdef PADDLE_CUDA_FP16
K
Kexin Zhao 已提交
197
namespace paddle {
K
kexinzhao 已提交
198
namespace platform {
K
Kexin Zhao 已提交
199

200 201
#if defined(PADDLE_WITH_HIP) || \
    (defined(PADDLE_WITH_CUDA) && CUDA_VERSION < 9000)
K
Kexin Zhao 已提交
202 203 204 205
ARITHMETIC_KERNEL(Add, +)
ARITHMETIC_KERNEL(Sub, -)
ARITHMETIC_KERNEL(Mul, *)
ARITHMETIC_KERNEL(Div, /)
K
Kexin Zhao 已提交
206

K
Kexin Zhao 已提交
207 208 209 210
ARITHMETIC_KERNEL_LAUNCH(Add)
ARITHMETIC_KERNEL_LAUNCH(Sub)
ARITHMETIC_KERNEL_LAUNCH(Mul)
ARITHMETIC_KERNEL_LAUNCH(Div)
K
Kexin Zhao 已提交
211

K
Kexin Zhao 已提交
212
// Negative sign kernel
213
__global__ void Neg(half *in) { in[0] = -in[0]; }
K
Kexin Zhao 已提交
214

K
Kexin Zhao 已提交
215 216
void TestNeg(float v_in, float v_out) {
  LOG(INFO) << "Test Neg on GPU!";
217 218
  half *in, *d_in;
  int size = sizeof(half);
219 220 221 222 223 224
#ifdef PADDLE_WITH_HIP
  hipMalloc(reinterpret_cast<void **>(&d_in), size);
#else
  cudaMalloc(reinterpret_cast<void **>(&d_in), size);
#endif
  in = reinterpret_cast<half *>(malloc(size));
225
  in[0] = half(float16(v_in));
226 227 228
#ifdef PADDLE_WITH_HIP
  hipMemcpy(d_in, in, size, hipMemcpyHostToDevice);
#else
K
Kexin Zhao 已提交
229
  cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
230
#endif
K
Kexin Zhao 已提交
231
  Neg<<<1, 1>>>(d_in);
232 233 234
#ifdef PADDLE_WITH_HIP
  hipMemcpy(in, d_in, size, hipMemcpyDeviceToHost);
#else
K
Kexin Zhao 已提交
235
  cudaMemcpy(in, d_in, size, cudaMemcpyDeviceToHost);
236
#endif
237
  EXPECT_EQ(static_cast<float>(float16(in[0])), v_out);
K
Kexin Zhao 已提交
238
  free(in);
239 240 241
#ifdef PADDLE_WITH_HIP
  hipFree(d_in);
#else
K
Kexin Zhao 已提交
242
  cudaFree(d_in);
243
#endif
K
Kexin Zhao 已提交
244
}
K
Kexin Zhao 已提交
245

K
Kexin Zhao 已提交
246 247 248 249
COMPOUND_KERNEL(AddAssign, +=)
COMPOUND_KERNEL(SubAssign, -=)
COMPOUND_KERNEL(MulAssign, *=)
COMPOUND_KERNEL(DivAssign, /=)
K
Kexin Zhao 已提交
250

K
Kexin Zhao 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
COMPOUND_KERNEL_LAUNCH(AddAssign)
COMPOUND_KERNEL_LAUNCH(SubAssign)
COMPOUND_KERNEL_LAUNCH(MulAssign)
COMPOUND_KERNEL_LAUNCH(DivAssign)

COMPARISON_KERNEL(Equal, ==)
COMPARISON_KERNEL(NotEqual, !=)
COMPARISON_KERNEL(Less, <)
COMPARISON_KERNEL(LessEqual, <=)
COMPARISON_KERNEL(Greater, >)
COMPARISON_KERNEL(GreaterEqual, >=)

COMPARISON_KERNEL_LAUNCH(Equal)
COMPARISON_KERNEL_LAUNCH(NotEqual)
COMPARISON_KERNEL_LAUNCH(Less)
COMPARISON_KERNEL_LAUNCH(LessEqual)
COMPARISON_KERNEL_LAUNCH(Greater)
COMPARISON_KERNEL_LAUNCH(GreaterEqual)

TEST(float16, arithmetic_on_gpu) {
  TestAdd(1, 2, 3);
  TestSub(2, 1, 1);
  TestMul(2, 3, 6);
  TestDiv(6, 2, 3);
  TestNeg(1, -1);
K
Kexin Zhao 已提交
276 277
}

K
Kexin Zhao 已提交
278 279 280 281 282 283
TEST(float16, compound_on_gpu) {
  TestAddAssign(1, 2, 3);
  TestSubAssign(2, 1, 1);
  TestMulAssign(2, 3, 6);
  TestDivAssign(6, 2, 3);
}
K
Kexin Zhao 已提交
284

K
Kexin Zhao 已提交
285 286 287 288 289 290 291 292 293 294 295 296 297 298
TEST(float16, comparision_on_gpu) {
  TestEqual(1, 1, true);
  TestEqual(1, 2, false);
  TestNotEqual(2, 3, true);
  TestNotEqual(2, 2, false);
  TestLess(3, 4, true);
  TestLess(3, 3, false);
  TestLessEqual(3, 3, true);
  TestLessEqual(3, 2, false);
  TestGreater(4, 3, true);
  TestGreater(4, 4, false);
  TestGreaterEqual(4, 4, true);
  TestGreaterEqual(4, 5, false);
}
299
#endif  // CUDA_VERSION
K
Kexin Zhao 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312

TEST(float16, conversion_on_gpu) {
  // Explicit conversion to and from cuda half
  EXPECT_EQ(float16(half(float16(1.0f))).x, 0x3c00);
  EXPECT_EQ(float16(half(float16(0.5f))).x, 0x3800);
  EXPECT_EQ(float16(half(float16(0.33333f))).x, 0x3555);
  EXPECT_EQ(float16(half(float16(0.0f))).x, 0x0000);
  EXPECT_EQ(float16(half(float16(-0.0f))).x, 0x8000);
  EXPECT_EQ(float16(half(float16(65504.0f))).x, 0x7bff);
  EXPECT_EQ(float16(half(float16(65536.0f))).x, 0x7c00);

  // Assignment operator
  float16 v_assign;
313
  v_assign = half(float16(1.0f));
K
Kexin Zhao 已提交
314 315
  EXPECT_EQ(v_assign.x, 0x3c00);
}
K
Kexin Zhao 已提交
316

K
kexinzhao 已提交
317 318 319 320 321
TEST(float16, lod_tensor_on_gpu) {
  framework::LoDTensor src_tensor;
  framework::LoDTensor gpu_tensor;
  framework::LoDTensor dst_tensor;

322
  float16 *src_ptr = src_tensor.mutable_data<float16>(
K
kexinzhao 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
      framework::make_ddim({2, 2}), CPUPlace());

  float16 arr[4] = {float16(1.0f), float16(0.5f), float16(0.33333f),
                    float16(0.0f)};
  memcpy(src_ptr, arr, 4 * sizeof(float16));

  // CPU LoDTensor to GPU LoDTensor
  CUDAPlace gpu_place(0);
  CUDADeviceContext gpu_ctx(gpu_place);
  framework::TensorCopy(src_tensor, gpu_place, gpu_ctx, &gpu_tensor);

  // GPU LoDTensor to CPU LoDTensor
  framework::TensorCopy(gpu_tensor, CPUPlace(), gpu_ctx, &dst_tensor);

  // Sync before comparing LoDTensors
  gpu_ctx.Wait();
339
  const float16 *dst_ptr = dst_tensor.data<float16>();
K
kexinzhao 已提交
340 341 342 343 344 345
  ASSERT_NE(src_ptr, dst_ptr);
  for (size_t i = 0; i < 4; ++i) {
    EXPECT_EQ(src_ptr[i].x, dst_ptr[i].x);
  }
}

346 347
template <typename T>
struct Functor {
348
  bool operator()(const T &val) {
349 350 351 352 353 354 355 356 357 358 359 360 361
    return std::type_index(typeid(T)) ==
           std::type_index(typeid(platform::float16));
  }
};

TEST(float16, typeid) {
  // the framework heavily used typeid hash
  Functor<float16> functor;
  float16 a = float16(.0f);
  Functor<int> functor2;
  int b(0);

  // compile time assert
G
GaoWei8 已提交
362 363 364 365 366 367
  PADDLE_ENFORCE_EQ(
      functor(a), true,
      platform::errors::Unavailable("The float16 support in GPU failed."));
  PADDLE_ENFORCE_EQ(
      functor2(b), false,
      platform::errors::Unavailable("The float16 support in GPU failed."));
368 369 370 371 372 373 374 375 376 377 378
}

// GPU test
TEST(float16, isinf) {
  float16 a;
  a.x = 0x7c00;
  float16 b = float16(INFINITY);
  // underflow to 0
  float16 native_a(5e-40f);
  EXPECT_EQ(std::isinf(a), true);
  EXPECT_EQ(std::isinf(b), true);
P
peizhilin 已提交
379 380 381
#ifndef _WIN32
  // overflow to inf
  float16 native_b(5e40f);
382
  EXPECT_EQ(std::isinf(native_b), true);
P
peizhilin 已提交
383
#endif
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
  EXPECT_EQ(native_a, float16(0));
}

TEST(float16, isnan) {
  float16 a;
  a.x = 0x7fff;
  float16 b = float16(NAN);
  float16 c = float16(5e40);
  // inf * +-0 will get a nan
  float16 d = c * float16(0);
  EXPECT_EQ(std::isnan(a), true);
  EXPECT_EQ(std::isnan(b), true);
  EXPECT_EQ(std::isnan(d), true);
}

TEST(float16, cast) {
  float16 a;
  a.x = 0x0070;
  auto b = a;
  {
    // change semantic, keep the same value
405
    float16 c = reinterpret_cast<float16 &>(reinterpret_cast<unsigned &>(b));
406 407 408 409 410
    EXPECT_EQ(b, c);
  }

  {
    // use uint32 low 16 bit store float16
411
    uint32_t c = reinterpret_cast<uint32_t &>(b);
412 413 414 415 416 417
    float16 d;
    d.x = c;
    EXPECT_EQ(b, d);
  }
}

K
kexinzhao 已提交
418
}  // namespace platform
K
Kexin Zhao 已提交
419
}  // namespace paddle
420
#endif  // PADDLE_CUDA_FP16