IntelOptimizedPaddle.md 1.6 KB
Newer Older
1 2 3 4
# Benchmark

Machine:

T
tensor-tang 已提交
5
- Server
6
 	- Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket
T
tensor-tang 已提交
7 8
- Laptop
 	- DELL XPS15-9560-R1745: i7-7700HQ 8G 256GSSD
9 10 11 12 13 14
 	- i5 MacBook Pro (Retina, 13-inch, Early 2015)
- Desktop
 	- i7-6700k

System: CentOS release 6.3 (Final), Docker 1.12.1.

15 16 17
PaddlePaddle: paddlepaddle/paddle:latest (for MKLML and MKL-DNN), paddlepaddle/paddle:latest-openblas (for OpenBLAS)
- MKL-DNN tag v0.11
- MKLML 2018.0.1.20171007
18
- OpenBLAS v0.2.20
19
(TODO: will rerun after 0.11.0)
20 21 22 23 24 25
	 
On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively.

## Benchmark Model

### Server
T
tensor-tang 已提交
26
Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
27 28 29 30 31 32 33

Input image size - 3 * 224 * 224, Time: images/second

- VGG-19

| BatchSize    | 64    | 128  | 256     |
|--------------|-------| -----| --------|
34 35 36
| OpenBLAS     | 7.80  | 9.00  | 10.80  | 
| MKLML        | 12.12 | 13.70 | 16.18  |
| MKL-DNN      | 28.46 | 29.83 | 30.44  |
37 38 39 40 41


chart on batch size 128
TBD

T
tensor-tang 已提交
42 43 44 45
 - ResNet-50

| BatchSize    | 64    | 128   | 256    |
|--------------|-------| ------| -------|
46 47 48
| OpenBLAS     | 25.22 | 25.68 | 27.12  | 
| MKLML        | 32.52 | 31.89 | 33.12  |
| MKL-DNN      | 81.69 | 82.35 | 84.08  |
T
tensor-tang 已提交
49 50 51 52 53


chart on batch size 128
TBD

54 55
 - GoogLeNet

T
tensor-tang 已提交
56 57 58 59 60 61 62 63 64
| BatchSize    | 64    | 128   | 256    |
|--------------|-------| ------| -------|
| OpenBLAS     | 88.58 | 92.15 | 101.4  | 
| MKLML        | 111.5 | 119.8 | 131.2  |
| MKL-DNN      | 238.0 | 259.6 | 276.6  |

chart on batch size 128
TBD

65 66 67 68
### Laptop
TBD
### Desktop
TBD