viterbi_decode.py 6.7 KB
Newer Older
J
Jack Zhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ..nn import Layer
J
Jiabin Yang 已提交
16
from ..fluid.framework import core, _non_static_mode
J
Jack Zhou 已提交
17 18
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type
19
from paddle import _C_ops
J
Jack Zhou 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

__all__ = ['viterbi_decode', 'ViterbiDecoder']


def viterbi_decode(potentials,
                   transition_params,
                   lengths,
                   include_bos_eos_tag=True,
                   name=None):
    """
    Decode the highest scoring sequence of tags computed by transitions and potentials and get the viterbi path.
 
    Args:
        potentials (Tensor): The input tensor of unary emission. This is a 3-D
            tensor with shape of [batch_size, sequence_length, num_tags]. The data type is float32 or float64. 
        transition_params (Tensor): The input tensor of transition matrix. This is a 2-D
            tensor with shape of [num_tags, num_tags]. The data type is float32 or float64. 
        lengths (Tensor):  The input tensor of length of each sequence. This is a 1-D tensor with shape of [batch_size]. The data type is int64. 
        include_bos_eos_tag (`bool`, optional): If set to True, the last row and the last column of transitions will be considered
            as start tag, the second to last row and the second to last column of transitions will be considered as stop tag. Defaults to ``True``.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        scores(Tensor): The output tensor containing the score for the Viterbi sequence. The shape is [batch_size]
            and the data type is float32 or float64.
        paths(Tensor): The output tensor containing the highest scoring tag indices.  The shape is [batch_size, sequence_length]
            and  the data type is int64.

    Example:
        .. code-block:: python

            import paddle
            paddle.seed(102)
            batch_size, seq_len, num_tags = 2, 4, 3
            emission = paddle.rand((batch_size, seq_len, num_tags), dtype='float32')
            length = paddle.randint(1, seq_len + 1, [batch_size])
            tags = paddle.randint(0, num_tags, [batch_size, seq_len])
            transition = paddle.rand((num_tags, num_tags), dtype='float32')
            scores, path = paddle.text.viterbi_decode(emission, transition, length, False) # scores: [3.37089300, 1.56825531], path: [[1, 0, 0], [1, 1, 0]]
    """
J
Jiabin Yang 已提交
61
    if _non_static_mode():
62 63
        return _C_ops.viterbi_decode(potentials, transition_params, lengths,
                                     'include_bos_eos_tag', include_bos_eos_tag)
J
Jack Zhou 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    check_variable_and_dtype(potentials, 'input', ['float32', 'float64'],
                             'viterbi_decode')
    check_variable_and_dtype(transition_params, 'transitions',
                             ['float32', 'float64'], 'viterbi_decode')
    check_variable_and_dtype(lengths, 'length', 'int64', 'viterbi_decode')
    check_type(include_bos_eos_tag, 'include_tag', bool, 'viterbi_decode')
    helper = LayerHelper('viterbi_decode', **locals())
    attrs = {'include_bos_eos_tag': include_bos_eos_tag}
    scores = helper.create_variable_for_type_inference(potentials.dtype)
    path = helper.create_variable_for_type_inference('int64')
    helper.append_op(
        type='viterbi_decode',
        inputs={
            'Input': potentials,
            'Transition': transition_params,
            'Length': lengths
        },
        outputs={'Scores': scores,
                 'Path': path},
        attrs=attrs)
    return scores, path


class ViterbiDecoder(Layer):
    """ 
    Decode the highest scoring sequence of tags computed by transitions and potentials and get the viterbi path. 

    Args:
        transitions (`Tensor`): The transition matrix.  Its dtype is float32 and has a shape of `[num_tags, num_tags]`.
        include_bos_eos_tag (`bool`, optional): If set to True, the last row and the last column of transitions will be considered
            as start tag, the second to last row and the second to last column of transitions will be considered as stop tag. Defaults to ``True``.
        name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Shape:
        potentials (Tensor): The input tensor of unary emission. This is a 3-D tensor with shape of 
            [batch_size, sequence_length, num_tags]. The data type is float32 or float64. 
        lengths (Tensor):  The input tensor of length of each sequence. This is a 1-D tensor with shape of
            [batch_size]. The data type is int64. 

    Returns:
        scores(Tensor): The output tensor containing the score for the Viterbi sequence. The shape is [batch_size]
            and the data type is float32 or float64.
        paths(Tensor): The output tensor containing the highest scoring tag indices.  The shape is [batch_size, sequence_length]
            and the data type is int64.

    Example:
        .. code-block:: python

            import paddle
            paddle.seed(102)
            batch_size, seq_len, num_tags = 2, 4, 3
            emission = paddle.rand((batch_size, seq_len, num_tags), dtype='float32')
            length = paddle.randint(1, seq_len + 1, [batch_size])
            tags = paddle.randint(0, num_tags, [batch_size, seq_len])
            transition = paddle.rand((num_tags, num_tags), dtype='float32')
            decoder = paddle.text.ViterbiDecoder(transition, include_bos_eos_tag=False)
            scores, path = decoder(emission, length) # scores: [3.37089300, 1.56825531], path: [[1, 0, 0], [1, 1, 0]]
    """

    def __init__(self, transitions, include_bos_eos_tag=True, name=None):
        super(ViterbiDecoder, self).__init__()
        self.transitions = transitions
        self.include_bos_eos_tag = include_bos_eos_tag
        self.name = name

    def forward(self, potentials, lengths):
        return viterbi_decode(potentials, self.transitions, lengths,
                              self.include_bos_eos_tag, self.name)