multihead_matmul_op.cu 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cuda_runtime.h>
#include <paddle/fluid/platform/device_context.h>
#include <algorithm>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/blas.h"

namespace paddle {
namespace operators {

#define FINAL_MASK 0xffffffff
#define HALF_WARP 16
#define WARP_SIZE 32

template <typename T>
31
__inline__ __device__ T warpReduceSum(T val, unsigned lane_mask) {
32 33
  for (int mask = HALF_WARP; mask > 0; mask >>= 1)
#if __CUDA_ARCH__ >= 350 && CUDA_VERSION >= 9000
34
    val += __shfl_xor_sync(lane_mask, val, mask, warpSize);
35 36 37 38 39 40 41 42
#else
    val += __shfl_xor(val, mask, warpSize);
#endif
  return val;
}

/* Calculate the sum of all elements in a block */
template <typename T>
43
__inline__ __device__ T blockReduceSum(T val, unsigned mask) {
44 45 46 47
  static __shared__ T shared[WARP_SIZE];
  int lane = threadIdx.x & 0x1f;
  int wid = threadIdx.x >> 5;

48
  val = warpReduceSum<T>(val, mask);
49 50 51 52 53

  if (lane == 0) shared[wid] = val;

  __syncthreads();

54 55 56 57
  // align block_span to warpSize
  int block_span = (blockDim.x + warpSize - 1) >> 5;
  val = (threadIdx.x < block_span) ? shared[lane] : (T)(0.0f);
  val = warpReduceSum<T>(val, mask);
58 59 60 61 62

  return val;
}

template <typename T>
63
__inline__ __device__ T warpReduceMax(T val, unsigned lane_mask) {
64 65
  for (int mask = HALF_WARP; mask > 0; mask >>= 1)
#if __CUDA_ARCH__ >= 350 && CUDA_VERSION >= 9000
66
    val = max(val, __shfl_xor_sync(lane_mask, val, mask, warpSize));
67 68 69 70 71 72 73 74
#else
    val = max(val, __shfl_xor(val, mask, warpSize));
#endif
  return val;
}

/* Calculate the maximum of all elements in a block */
template <typename T>
75
__inline__ __device__ T blockReduceMax(T val, unsigned mask) {
76 77 78 79
  static __shared__ T shared[WARP_SIZE];
  int lane = threadIdx.x & 0x1f;
  int wid = threadIdx.x >> 5;

80
  val = warpReduceMax(val, mask);
81 82 83 84 85

  if (lane == 0) shared[wid] = val;

  __syncthreads();

86 87 88 89
  // align block_span to warpSize
  int block_span = (blockDim.x + warpSize - 1) >> 5;
  val = (threadIdx.x < block_span) ? shared[lane] : -1e10f;
  val = warpReduceMax(val, mask);
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

  return val;
}

template <typename T>
__global__ void add_QKV(const T *Q, const T *K, const T *V, T *q_buf_,
                        T *k_buf_, T *v_buf_, const T *bias_q, const T *bias_k,
                        const T *bias_v, int batch_size, int seq_len,
                        int head_num, int size_per_head) {
  const T *data_ptr_q, *data_ptr_k, *data_ptr_v;
  const T *bias_ptr_q, *bias_ptr_k, *bias_ptr_v;

  int m = batch_size * seq_len;
  int n = head_num * size_per_head;

  int row_offset = (blockIdx.x % m) * n;

  data_ptr_q = Q + row_offset;
  data_ptr_k = K + row_offset;
  data_ptr_v = V + row_offset;
  // bias ptr
  bias_ptr_q = bias_q;
  bias_ptr_k = bias_k;
  bias_ptr_v = bias_v;

  int batch_id = (blockIdx.x % m) / seq_len;
  int head_id = threadIdx.x / size_per_head;
  int id_in_head = threadIdx.x % size_per_head;
  int word_start_id = (blockIdx.x) % seq_len;

#if __CUDA_ARCH__ >= 350
  T tmp_q = __ldg(&data_ptr_q[threadIdx.x]) + __ldg(&bias_ptr_q[threadIdx.x]);
  T tmp_k = __ldg(&data_ptr_k[threadIdx.x]) + __ldg(&bias_ptr_k[threadIdx.x]);
  T tmp_v = __ldg(&data_ptr_v[threadIdx.x]) + __ldg(&bias_ptr_v[threadIdx.x]);
#else
  T tmp_q = data_ptr_q[threadIdx.x] + bias_ptr_q[threadIdx.x];
  T tmp_k = data_ptr_k[threadIdx.x] + bias_ptr_k[threadIdx.x];
  T tmp_v = data_ptr_v[threadIdx.x] + bias_ptr_v[threadIdx.x];
#endif

  int target_id = batch_id * (seq_len * head_num * size_per_head) +
                  head_id * seq_len * size_per_head +
                  word_start_id * size_per_head + id_in_head;

  q_buf_[target_id] = tmp_q;
  k_buf_[target_id] = tmp_k;
  v_buf_[target_id] = tmp_v;
}

// Keep to compare performance
template <typename T>
__global__ void add_QKV_V2(const T *Q, const T *K, const T *V, T *q_buf_,
                           T *k_buf_, T *v_buf_, const T *bias_Q,
                           const T *bias_K, const T *bias_V, int batch_size,
                           int seq_len, int head_num, int size_per_head,
                           const int word_per_block) {
  const T *data_ptr;
  T *buf_ptr;
  const T *bias_ptr;

  int m = batch_size * seq_len;
  int n = head_num * size_per_head;

  int qkv_id = blockIdx.x * word_per_block / m;
  int row_offset = (blockIdx.x * word_per_block % m) * n;

  if (qkv_id == 0) {
    data_ptr = Q + row_offset;
    buf_ptr = q_buf_;
    bias_ptr = bias_Q;
  } else if (qkv_id == 1) {
    data_ptr = K + row_offset;
    buf_ptr = k_buf_;
    bias_ptr = bias_K;
  } else {
    data_ptr = V + row_offset;
    buf_ptr = v_buf_;
    bias_ptr = bias_V;
  }

  int batch_id = (blockIdx.x * word_per_block % m) / seq_len;
  int head_id = threadIdx.x / size_per_head;
  int id_in_head = threadIdx.x % size_per_head;
  int word_start_id = (blockIdx.x * word_per_block) % seq_len;

#if __CUDA_ARCH__ >= 350
  T bias = __ldg(&bias_ptr[threadIdx.x]);
#else
  T bias = bias_ptr[threadIdx.x];
#endif

  for (int i = word_start_id; i < word_start_id + word_per_block; ++i) {
    T tmp = data_ptr[threadIdx.x] + bias;

    int target_id = batch_id * (seq_len * head_num * size_per_head) +
                    head_id * seq_len * size_per_head + i * size_per_head +
                    id_in_head;

    buf_ptr[target_id] = tmp;
    data_ptr += n;
  }
}

template <typename T>
__global__ void softmax_kernel_with_eltadd(T *qk_buf_, const T *bias_qk_,
                                           const int batch_size,
                                           const int head_num,
197 198
                                           const int seq_len,
                                           const unsigned mask) {
199 200 201 202 203 204 205 206 207 208 209
  int seq_id = blockIdx.x % seq_len;
  int qk_offset = blockIdx.x * seq_len;
  int bias_offset = blockIdx.x % (head_num * seq_len) * seq_len;

  __shared__ float s_sum, s_max;

  float qk = threadIdx.x < seq_len
                 ? static_cast<float>((qk_buf_[threadIdx.x + qk_offset] +
                                       bias_qk_[threadIdx.x + bias_offset]))
                 : 0.0f;
  float tmp = threadIdx.x < seq_len ? static_cast<float>(qk) : -1e20f;
210 211 212

  float max_val = blockReduceMax<float>(tmp, mask);

213 214 215 216 217
  if (threadIdx.x == 0) s_max = max_val;
  __syncthreads();

  float qk_tmp =
      threadIdx.x < seq_len ? __expf(static_cast<float>(tmp - s_max)) : 0.0f;
218
  float sum_val = blockReduceSum<float>(qk_tmp, mask);
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

  if (threadIdx.x == 0) {
    s_sum = sum_val + 1e-6f;
  }
  __syncthreads();

  if (threadIdx.x < seq_len)
    qk_buf_[threadIdx.x + qk_offset] = (T)(qk_tmp / s_sum);
}

// For verify result
template <typename T>
__global__ void elt_qk_add(const T *bias_qk, T *qk_buf, int head_num,
                           int seq_len, int size_per_head, int batch_size) {
  int m = batch_size * head_num * seq_len;
  int row_id = blockIdx.x % m;
  int dst_id = row_id * seq_len + threadIdx.x;
  const T *bias_ptr = bias_qk;
#if __CUDA_ARCH__ >= 350
  int tmp_bias = __ldg(&bias_ptr[dst_id]);
#else
  int tmp_bias = bias_ptr[dst_id];
#endif

  qk_buf[dst_id] += tmp_bias;
}

// Compute Q*K->softmax->eltadd
template <typename T>
void MatMulWithHeadQK(const platform::CUDADeviceContext &context, int head_num,
                      int seq_len, int size_per_head, int batch_size,
                      bool q_trans, bool k_trans, T *q_buf_, T *k_buf_,
                      T *qk_buf_, const T *bias_qk, T alpha, T beta) {
  CBLAS_TRANSPOSE transA = !q_trans ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !k_trans ? CblasNoTrans : CblasTrans;

  auto blas = math::GetBlas<platform::CUDADeviceContext, T>(context);
  auto stream = context.stream();

  blas.BatchedGEMM(transA, transB, seq_len, seq_len, size_per_head, alpha,
                   q_buf_, k_buf_, beta, qk_buf_, batch_size * head_num,
                   seq_len * size_per_head, seq_len * size_per_head);

  int m = batch_size * head_num * seq_len;
  int k = seq_len;

  int grid = m;
  int block = k;

268
  unsigned mask = block < 32 ? (((unsigned)1 << block) - 1) : FINAL_MASK;
269
  softmax_kernel_with_eltadd<T><<<grid, block, 0, stream>>>(
270
      qk_buf_, bias_qk, batch_size, head_num, seq_len, mask);
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
}

template <typename T>
__global__ void transpose(T *src, T *dst, const int batch_size,
                          const int seq_len, const int head_num,
                          const int size_per_head) {
  int batch_id = blockIdx.x / (head_num * seq_len);
  int seq_id = blockIdx.x % seq_len;
  int head_id = (blockIdx.x % (head_num * seq_len)) / seq_len;
  dst[batch_id * (head_num * seq_len * size_per_head) +
      seq_id * head_num * size_per_head + head_id * size_per_head +
      threadIdx.x] = src[blockIdx.x * size_per_head + threadIdx.x];
}

// Compute QK*V->transpose
template <typename T>
void MatMulWithHeadQKV(const platform::CUDADeviceContext &context, int head_num,
                       int seq_len, int size_per_head, int batch_size,
                       bool qk_trans, bool v_trans, T *v_buf_, const T *qk_buf_,
                       T *dst, T *out, T alpha, T beta) {
  int m = batch_size * seq_len;
  int k = head_num * size_per_head;

  auto blas = math::GetBlas<platform::CUDADeviceContext, T>(context);
  auto stream = context.stream();
  CBLAS_TRANSPOSE transA = !qk_trans ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = !v_trans ? CblasNoTrans : CblasTrans;

  blas.BatchedGEMM(transA, transB, seq_len, size_per_head, seq_len, alpha,
                   qk_buf_, v_buf_, beta, dst, batch_size * head_num,
                   seq_len * seq_len, seq_len * size_per_head);

  int grid = batch_size * head_num * seq_len;
  int block = size_per_head;
  transpose<T><<<grid, block, 0, stream>>>(dst, out, batch_size, seq_len,
                                           head_num, size_per_head);
}

template <typename T>
void MultiHeadGPUCompute(const platform::CUDADeviceContext &dev_ctx,
                         int head_num, const framework::DDim &mat_q,
                         const framework::DDim &mat_k,
                         const framework::DDim &mat_v, const T *Q, const T *K,
                         const T *V, const T *bias_q, const T *bias_k,
                         const T *bias_v, const T *bias_qk, T *out, T alpha,
                         T beta, bool trans_q, bool trans_k, bool trans_v) {
  int seq_len = mat_q[1];
  int size_per_head = (mat_q[2] / head_num);
  int batch_size = mat_q[0];
  int buf_size = batch_size * head_num * seq_len * size_per_head;
  int qk_buf_size = batch_size * head_num * seq_len * seq_len;

  auto alloc_buf =
      memory::Alloc(dev_ctx, (buf_size * 4 + qk_buf_size) * sizeof(T));

  T *buf = reinterpret_cast<T *>(alloc_buf->ptr());
  T *q_buf = buf;
  T *k_buf = buf + buf_size;
  T *v_buf = buf + 2 * buf_size;
  T *qk_buf = buf + 3 * buf_size;
  T *dst_buf = buf + 3 * buf_size + qk_buf_size;

  int m = batch_size * seq_len;
  int k = head_num * size_per_head;

  // Each block process head*size-per_head element,
  // have m lines. bias is m lines
  auto blas = math::GetBlas<platform::CUDADeviceContext, T>(dev_ctx);
  auto stream = dev_ctx.stream();

  int grid = m;
342
  PADDLE_ENFORCE_LE(k, 1024,
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
                    "Input head_number * size_per_head should <= 1024");
  int block = k <= 1024 ? k : 1024;
  add_QKV<T><<<grid, block, 0, stream>>>(Q, K, V, q_buf, k_buf, v_buf, bias_q,
                                         bias_k, bias_v, batch_size, seq_len,
                                         head_num, size_per_head);

  MatMulWithHeadQK<T>(dev_ctx, head_num, seq_len, size_per_head, batch_size,
                      trans_q, trans_k, q_buf, k_buf, qk_buf, bias_qk, alpha,
                      beta);
  MatMulWithHeadQKV<T>(dev_ctx, head_num, seq_len, size_per_head, batch_size,
                       false, trans_v, v_buf, qk_buf, dst_buf, out, T(1.0),
                       beta);
}

template <typename DeviceContext, typename T>
class MultiHeadMatMulKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *q = context.Input<framework::Tensor>("Q");
    auto *k = context.Input<framework::Tensor>("K");
    auto *v = context.Input<framework::Tensor>("V");

    auto &bias_q = detail::Ref(context.Input<framework::Tensor>("BiasQ"),
                               "Cannot find BiasQ");
    auto &bias_k = detail::Ref(context.Input<framework::Tensor>("BiasK"),
                               "Cannot find BiasK");
    auto &bias_v = detail::Ref(context.Input<framework::Tensor>("BiasV"),
                               "Cannot find BiasV");

    auto &bias_qk = detail::Ref(context.Input<framework::Tensor>("BiasQK"),
                                "Cannot find QK");

    auto *out = context.Output<framework::Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());

    T scale = static_cast<T>(context.Attr<float>("alpha"));
    bool transpose_q = context.Attr<bool>("transpose_Q");
    bool transpose_k = context.Attr<bool>("transpose_K");
    bool transpose_v = context.Attr<bool>("transpose_V");

    int head_number = context.Attr<int>("head_number");
    // compute q*k with eltadd
    auto &device_ctx = context.template device_context<DeviceContext>();

    MultiHeadGPUCompute<T>(device_ctx, head_number, q->dims(), k->dims(),
                           v->dims(), q->data<T>(), k->data<T>(), v->data<T>(),
                           bias_q.data<T>(), bias_k.data<T>(), bias_v.data<T>(),
                           bias_qk.data<T>(), out->data<T>(), scale, T(0.0),
                           transpose_q, transpose_k, transpose_v);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    multihead_matmul,
    ops::MultiHeadMatMulKernel<paddle::platform::CUDADeviceContext, float>,
    ops::MultiHeadMatMulKernel<paddle::platform::CUDADeviceContext, double>);