BufferArg.h 10.0 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <glog/logging.h>

#include "TensorShape.h"
#include "TensorType.h"
#include "paddle/math/Matrix.h"

namespace paddle {

enum BufferType {
X
xutianbing 已提交
26 27 28 29 30
  TENSOR_UNKNOWN = 0,
  TENSOR_NORMAL = 1,
  TENSOR_SEQUENCE_ID = 2,
  TENSOR_SEQUENCE_DATA = 3,
  TENSOR_SPARSE = 4
H
hedaoyuan 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43
};

enum SparseDataType {
  SPARSE_NO_VALUE = 0,  // do not need value pointer, all values are 1
  SPARSE_FLOAT_VALUE = 1
};

enum SparseDataFormat { SPARSE_CSR_FORMAT = 0, SPARSE_CSC_FORMAT = 1 };

class BufferArg;
class SequenceArg;
class SparseMatrixArg;

44 45 46 47 48 49 50 51 52
/**
 * \brief BufferArg used as the argument type of Function.
 *
 * The arguments of the Paddle Function have four Buffer types.
 * 1. BufferArg for a dense Buffer of any dimension.
 * 2. SequenceIdArg for a Buffer of sequence start positions.
 * 3. SequenceArg for a Buffer of sequence data.
 * 4. SparseMatrixArg for a Buffer of sparse matrix.
 *
53 54 55 56 57
 * Buffer shape
 * For most buffers, the first dimension `shape()[0]` represents
 * the size of the mini-batch.
 *
 * Buffer argType
58 59 60 61 62
 * There is an ArgType property for the BufferArg used as Function Output.
 * Whether the result of the Function calculation is assigned to the
 * output Buffer or added to the output Buffer is determined by the
 * argType_ property of the output BufferArg.
 */
63 64 65 66 67 68 69 70 71

// ArgType is only used by output BufferArg.
// For input argument, argType_ is ignored.
// For output argument, need to set the argType_ of the BufferArg.
enum ArgType {
  UNSPECIFIED = 0,
  ASSIGN_TO = 1,
  ADD_TO = 2,
};
H
hedaoyuan 已提交
72
class BufferArg {
73 74 75 76 77
public:
  void setArgType(ArgType argType) { argType_ = argType; }

  ArgType getArgType() const { return argType_; }

H
hedaoyuan 已提交
78
public:
79 80 81 82 83 84 85 86
  BufferArg(ValueType valueType,
            const TensorShape& shape,
            ArgType argType = UNSPECIFIED)
      : buf_(nullptr),
        valueType_(valueType),
        shape_(shape),
        argType_(argType) {}

87 88 89 90 91
  BufferArg(void* buf,
            ValueType valueType,
            const TensorShape& shape,
            ArgType argType = UNSPECIFIED)
      : buf_(buf), valueType_(valueType), shape_(shape), argType_(argType) {}
H
hedaoyuan 已提交
92 93 94 95

  BufferArg(void* buf, ValueType valueType)
      : buf_(buf), valueType_(valueType) {}

96
  BufferArg(const Matrix& matrix, ArgType argType = UNSPECIFIED)
97 98
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(matrix.getData()))),
H
hedaoyuan 已提交
99
        valueType_(DataType<real>::value),
100
        shape_(2),
101 102
        argType_(argType),
        trans_(matrix.isTransposed()) {
X
xutianbing 已提交
103
    bufferType_ = TENSOR_NORMAL;
H
hedaoyuan 已提交
104 105 106 107
    shape_.setDim(0, matrix.getHeight());
    shape_.setDim(1, matrix.getWidth());
  }

108 109 110
  BufferArg(const Matrix& matrix,
            const TensorShape& shape,
            ArgType argType = UNSPECIFIED)
111 112
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(matrix.getData()))),
H
hedaoyuan 已提交
113
        valueType_(DataType<real>::value),
114
        shape_(shape),
115 116
        argType_(argType),
        trans_(matrix.isTransposed()) {
X
xutianbing 已提交
117
    bufferType_ = TENSOR_NORMAL;
H
hedaoyuan 已提交
118 119 120
    CHECK_EQ(matrix.getElementCnt(), shape.getElements());
  }

121
  BufferArg(const Vector& vector, ArgType argType = UNSPECIFIED)
122 123
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(vector.getData()))),
H
hedaoyuan 已提交
124
        valueType_(DataType<real>::value),
125 126
        shape_(1),
        argType_(argType) {
X
xutianbing 已提交
127
    bufferType_ = TENSOR_NORMAL;
H
hedaoyuan 已提交
128 129 130
    shape_.setDim(0, vector.getSize());
  }

131
  BufferArg(const IVector& vector, ArgType argType = UNSPECIFIED)
132 133
      : buf_(
            const_cast<void*>(reinterpret_cast<const void*>(vector.getData()))),
H
hedaoyuan 已提交
134
        valueType_(VALUE_TYPE_INT32),
135 136
        shape_(1),
        argType_(argType) {
X
xutianbing 已提交
137
    bufferType_ = TENSOR_NORMAL;
H
hedaoyuan 已提交
138 139 140 141 142 143 144 145
    shape_.setDim(0, vector.getSize());
  }

  template <DeviceType DType>
  typename Tensor<real, DType>::Matrix matrix() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<real>::value);
    // CHECK(deviceType_ == DType);
H
hedaoyuan 已提交
146
    CHECK_EQ((size_t)2, shape_.ndims());
H
hedaoyuan 已提交
147
    return typename Tensor<real, DType>::Matrix(
148
        reinterpret_cast<real*>(buf_), shape_[0], shape_[1], trans_);
H
hedaoyuan 已提交
149 150 151 152 153 154 155
  }

  template <typename VType, DeviceType DType>
  typename Tensor<VType, DType>::Vector vector() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<VType>::value);
    // CHECK(deviceType_ == DType);
H
hedaoyuan 已提交
156
    CHECK_EQ((size_t)1, shape_.ndims());
H
hedaoyuan 已提交
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    return typename Tensor<VType, DType>::Vector(
        shape_[0], reinterpret_cast<VType*>(buf_));
  }

  virtual ~BufferArg() {}

  template <typename T>
  T* data() const {
    return reinterpret_cast<T*>(buf_);
  }

  void* data() const { return buf_; }
  ValueType valueType() const { return valueType_; }
  BufferType bufferType() const { return bufferType_; }
  const TensorShape& shape() const { return shape_; }
172
  bool isSparseArg() const { return TENSOR_SPARSE == bufferType_; }
X
xutianbing 已提交
173
  bool isSequenceArg() const { return TENSOR_SEQUENCE_DATA == bufferType_; }
H
hedaoyuan 已提交
174 175 176 177 178 179 180 181

  const SequenceArg& sequence() const;
  const SparseMatrixArg& sparse() const;

protected:
  void* buf_;
  ValueType valueType_;
  TensorShape shape_;
X
xutianbing 已提交
182 183
  BufferType bufferType_{TENSOR_UNKNOWN};
  ArgType argType_{UNSPECIFIED};
184
  bool trans_{false};
H
hedaoyuan 已提交
185 186 187 188 189 190 191
  // leading dimensions. The size is dims_.size()
  // Dims lds_;
};

// sequence start positions in a mini-batch of sequences
// shape_.ndims() == 1
// valueType_ = int32
H
hedaoyuan 已提交
192
// if a < b then value_.buf_[a] < value_.buf_[b]
H
hedaoyuan 已提交
193 194
class SequenceIdArg : public BufferArg {
public:
195 196 197
  SequenceIdArg(const TensorShape& shape, ArgType argType = UNSPECIFIED)
      : BufferArg(VALUE_TYPE_INT32, shape, argType) {
    CHECK_EQ(shape_.ndims(), (size_t)1);
H
hedaoyuan 已提交
198
    CHECK_GT(shape_[0], 1);
199 200 201
    numSeqs_ = shape_[0] - 1;
  }

202 203 204 205
  SequenceIdArg(void* buf,
                const TensorShape& shape,
                ArgType argType = UNSPECIFIED)
      : BufferArg(buf, VALUE_TYPE_INT32, shape, argType) {
X
xutianbing 已提交
206
    bufferType_ = TENSOR_SEQUENCE_ID;
H
hedaoyuan 已提交
207
    CHECK_EQ(shape_.ndims(), (size_t)1);
H
hedaoyuan 已提交
208 209 210 211
    numSeqs_ = shape_[0] - 1;
  }

  SequenceIdArg(const IVector& vector) : BufferArg(vector) {
X
xutianbing 已提交
212
    bufferType_ = TENSOR_SEQUENCE_ID;
H
hedaoyuan 已提交
213 214 215 216 217 218 219 220 221 222 223
    numSeqs_ = shape_[0] - 1;
  }

  ~SequenceIdArg() {}

  size_t numSeqs() const { return numSeqs_; }

private:
  size_t numSeqs_;
};

224 225 226 227 228
// sequences data
// For mini-batch calculate,
// one batch can contain more than one sequence of data.
// SequenceArg can be used to represent sequences that contain multiple
// unequal lengths.
H
hedaoyuan 已提交
229 230
class SequenceArg : public BufferArg {
public:
231 232 233 234 235
  SequenceArg(ValueType valueType,
              const TensorShape& shape,
              ArgType argType = UNSPECIFIED)
      : BufferArg(valueType, shape, argType), startPositions_(TensorShape()) {}

H
hedaoyuan 已提交
236 237 238
  SequenceArg(void* buf,
              ValueType valueType,
              const TensorShape& shape,
239 240 241
              const SequenceIdArg& startPositions,
              ArgType argType = UNSPECIFIED)
      : BufferArg(buf, valueType, shape, argType),
X
xutianbing 已提交
242 243 244
        startPositions_(startPositions) {
    bufferType_ = TENSOR_SEQUENCE_DATA;
  }
H
hedaoyuan 已提交
245

246 247 248
  SequenceArg(const Matrix& matrix,
              const IVector& vector,
              ArgType argType = UNSPECIFIED)
X
xutianbing 已提交
249 250 251
      : BufferArg(matrix, argType), startPositions_(vector) {
    bufferType_ = TENSOR_SEQUENCE_DATA;
  }
H
hedaoyuan 已提交
252 253 254 255 256

  ~SequenceArg() {}

  void* getIdBuf() const { return startPositions_.data(); }
  size_t numSeqs() const { return startPositions_.numSeqs(); }
257 258
  SequenceIdArg& getSequenceId() { return startPositions_; }
  const SequenceIdArg& getSequenceId() const { return startPositions_; }
H
hedaoyuan 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275

private:
  SequenceIdArg startPositions_;
};

// sparse matrix
// valueType_ == float or double
// shape_.ndims() == 2
class SparseMatrixArg : public BufferArg {
public:
  SparseMatrixArg(void* buf,
                  ValueType valueType,
                  const TensorShape& shape,
                  const BufferArg& row,
                  const BufferArg& col,
                  size_t nnz,
                  SparseDataFormat format,
276 277 278
                  SparseDataType type,
                  ArgType argType = UNSPECIFIED)
      : BufferArg(buf, valueType, shape, argType),
H
hedaoyuan 已提交
279 280 281 282
        row_(row),
        col_(col),
        nnz_(nnz),
        format_(format),
283
        type_(type) {
X
xutianbing 已提交
284
    bufferType_ = TENSOR_SPARSE;
H
hedaoyuan 已提交
285
    CHECK((valueType == VALUE_TYPE_FLOAT) || (valueType == VALUE_TYPE_DOUBLE));
H
hedaoyuan 已提交
286 287 288
    CHECK_EQ(shape_.ndims(), (size_t)2);
    CHECK_EQ(row_.shape().ndims(), (size_t)1);
    CHECK_EQ(col_.shape().ndims(), (size_t)1);
H
hedaoyuan 已提交
289 290 291 292 293 294 295
    if (format == SPARSE_CSR_FORMAT) {
      CHECK_EQ(nnz, col.shape()[0]);
    } else if (format == SPARSE_CSC_FORMAT) {
      CHECK_EQ(nnz, row.shape()[0]);
    }
  }

296
  SparseMatrixArg(const CpuSparseMatrix& sparse, ArgType argType = UNSPECIFIED);
H
hedaoyuan 已提交
297

298
  SparseMatrixArg(const GpuSparseMatrix& sparse, ArgType argType = UNSPECIFIED);
H
hedaoyuan 已提交
299

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
  template <DeviceType DType>
  typename Tensor<real, DType>::SparseMatrix SparseMatrix() const {
    CHECK(buf_);
    CHECK(valueType_ == DataType<real>::value);
    // CHECK(deviceType_ == DType);
    CHECK_EQ(2, shape_.ndims());
    return typename Tensor<real, DType>::SparseMatrix(
        reinterpret_cast<real*>(buf_),
        reinterpret_cast<int*>(row_.data()),
        reinterpret_cast<int*>(col_.data()),
        shape_[0],
        shape_[1],
        nnz_,
        static_cast<SparseValueType>(type_),
        static_cast<SparseFormat>(format_),
        trans_);
  }

H
hedaoyuan 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
  ~SparseMatrixArg() {}

  void* getRowBuf() const { return row_.data(); }

  void* getColBuf() const { return col_.data(); }

  size_t nnz() const { return nnz_; }

  SparseDataFormat dataFormat() const { return format_; }

  SparseDataType dataType() const { return type_; }

private:
  BufferArg row_;
  BufferArg col_;
  size_t nnz_;
  SparseDataFormat format_;
  SparseDataType type_;
};

}  // namespace paddle