ngraph_engine.cc 21.5 KB
Newer Older
B
baojun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>

#include <algorithm>
#include <map>
19
#include <memory>
B
baojun 已提交
20
#include <string>
21 22
#include <unordered_set>
#include <utility>
B
baojun 已提交
23 24 25 26 27 28 29 30 31 32
#include <vector>

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_desc.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/var_type.h"
33
#include "paddle/fluid/operators/ngraph/ngraph_bridge.h"
B
baojun 已提交
34 35 36 37 38 39 40 41 42 43
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"

namespace paddle {
namespace operators {

static ngraph::Shape Ddim2Shape(const framework::DDim& dims) {
  ngraph::Shape sp;
  for (int i = 0; i < dims.size(); ++i) {
    int k = dims[i];
    k = k == 0 ? 1 : k;
44
    sp.emplace_back(k);
B
baojun 已提交
45 46 47 48
  }
  return sp;
}

49 50 51 52 53 54 55 56 57
static framework::DDim Shape2Ddim(const ngraph::Shape& shape) {
  std::vector<int64_t> dims;
  for (size_t i = 0; i < shape.size(); ++i) {
    int64_t k = shape[i];
    dims.emplace_back(k);
  }
  return framework::make_ddim(dims);
}

B
baojun 已提交
58 59 60 61 62 63
static std::map<framework::proto::VarType::Type, ngraph::element::Type>
    pd2ng_type_map = {
        {framework::proto::VarType::FP32, ngraph::element::f32},
        {framework::proto::VarType::FP64, ngraph::element::f64},
        {framework::proto::VarType::INT32, ngraph::element::i32},
        {framework::proto::VarType::INT64, ngraph::element::i64},
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
        {framework::proto::VarType::BOOL, ngraph::element::boolean}};

static std::map<ngraph::element::Type, framework::proto::VarType::Type>
    ng2pd_type_map = {
        {ngraph::element::f32, framework::proto::VarType::FP32},
        {ngraph::element::f64, framework::proto::VarType::FP64},
        {ngraph::element::i32, framework::proto::VarType::INT32},
        {ngraph::element::i64, framework::proto::VarType::INT64},
        {ngraph::element::boolean, framework::proto::VarType::BOOL}};

std::vector<std::string> NgraphEngine::feed_vars = {};
std::vector<std::string> NgraphEngine::fetch_vars = {};
framework::Variable* NgraphEngine::pre_var_ptr = nullptr;
const framework::BlockDesc* NgraphEngine::p_bdesc = nullptr;

std::unordered_map<std::string, EngineCache> NgraphEngine::engine_cache = {};
std::unordered_map<std::string,
                   std::vector<std::shared_ptr<ngraph::runtime::Tensor>>>
    NgraphEngine::t_in_cache_ = {};
B
baojun 已提交
83 84 85 86 87

std::shared_ptr<ngraph::runtime::Backend> NgraphEngine::backend_ =
    ngraph::runtime::Backend::create("CPU");

static std::vector<std::vector<int>> NgraphOpIntervals(
88 89 90
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops) {
  NgraphEngine::feed_vars.clear();
  NgraphEngine::fetch_vars.clear();
B
baojun 已提交
91
  std::vector<std::vector<int>> intervals;
92 93

  int size = ops->size();
B
baojun 已提交
94
  int left = 0;
B
baojun 已提交
95 96
  while (left < size && ops->at(left)->Type() != framework::kFeedOpType &&
         ops->at(left)->Type() != framework::kFetchOpType) {
B
baojun 已提交
97 98
    ++left;
  }
99 100 101 102 103 104 105

  while (left < size && ops->at(left)->Type() == framework::kFeedOpType) {
    for (auto& var_name_item : ops->at(left)->Outputs()) {
      for (auto& var_name : var_name_item.second) {
        NgraphEngine::feed_vars.emplace_back(var_name);
      }
    }
B
baojun 已提交
106 107 108 109
    ++left;
  }

  int right = left;
110
  while (right < size && ops->at(right)->Type() != framework::kFetchOpType) {
B
baojun 已提交
111 112 113
    ++right;
  }

114 115 116 117 118 119 120 121 122 123
  int index = right;
  while (index < size && ops->at(index)->Type() == framework::kFetchOpType) {
    for (auto& var_name_item : ops->at(index)->Inputs()) {
      for (auto& var_name : var_name_item.second) {
        NgraphEngine::fetch_vars.emplace_back(var_name);
      }
    }
    ++index;
  }

B
baojun 已提交
124 125 126 127
  if (left == size || ops->at(left)->Type() == framework::kFetchOpType) {
    left = 0;
  }

B
baojun 已提交
128 129 130
  // (left, right - 1) represents indices between feed and fetch
  int pivot = left;
  while (pivot < right) {
131
    auto op_type = ops->at(pivot)->Type();
132
    if (NgraphBridge::isRegister(op_type)) {
B
baojun 已提交
133 134 135 136
      ++pivot;
    } else {
      int start = pivot, end = start;
      while (pivot < right &&
137
             (!NgraphBridge::isRegister(ops->at(pivot)->Type()))) {
B
baojun 已提交
138 139 140 141
        ++pivot;
        ++end;
      }
      std::vector<int> interval = {start, end};
142
      intervals.emplace_back(interval);
B
baojun 已提交
143 144 145 146 147
    }
  }  // end while
  return intervals;
}

148 149 150 151 152 153 154 155 156 157 158 159
static void SubstituteNgraphOp(
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops,
    std::string engine_key, std::string block_str, std::vector<int> interval) {
  framework::OpDesc ng_op_desc(nullptr);
  ng_op_desc.SetType("ngraph_engine");
  ng_op_desc.SetAttr("interval", interval);
  ng_op_desc.SetAttr("engine_key", engine_key);
  ng_op_desc.SetAttr("graph", block_str);

  ops->erase(ops->begin() + interval[0], ops->begin() + interval[1]);
  ops->insert(ops->begin() + interval[0],
              framework::OpRegistry::CreateOp(ng_op_desc));
B
baojun 已提交
160 161
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
std::string SerializedBlock(const std::vector<framework::OpDesc*>& op_descs) {
  framework::proto::BlockDesc block_proto;
  framework::BlockDesc block_desc(nullptr, &block_proto);
  block_desc.Proto()->set_parent_idx(-1);
  block_desc.Proto()->set_idx(0);

  for (auto* op_desc : op_descs) {
    auto* op = block_desc.AppendOp();
    *op->Proto() = *op_desc->Proto();
  }
  return block_desc.Proto()->SerializeAsString();
}

std::string GenerateEngineKey(const framework::BlockDesc& bdesc) {
  framework::proto::BlockDesc block_proto;
  framework::BlockDesc block_desc(nullptr, &block_proto);
  block_desc.Proto()->set_parent_idx(-1);
  block_desc.Proto()->set_idx(0);

  for (auto& op_desc : bdesc.AllOps()) {
    auto* op = block_desc.AppendOp();
    *op->Proto() = *op_desc->Proto();
  }
  auto engine_key = std::to_string(
      std::hash<std::string>()(block_desc.Proto()->SerializeAsString()));
  return engine_key;
}

std::string GenerateEngineKey(const std::vector<std::string>& engine_inputs,
                              const std::vector<std::string>& engine_outputs,
                              int size) {
  std::string engine_hash_key = "";
  for (auto name : engine_inputs) {
    engine_hash_key += name;
  }
  for (auto name : engine_outputs) {
    engine_hash_key += name;
  }
  engine_hash_key += std::to_string(size);
  auto engine_key = std::to_string(std::hash<std::string>()(engine_hash_key));
  return engine_key;
}

void NgraphEngine::FuseNgraphOps(
    const framework::BlockDesc& block_desc,
    std::vector<std::unique_ptr<framework::OperatorBase>>* ops) {
  NgraphEngine::p_bdesc = &block_desc;
  auto intervals = NgraphOpIntervals(ops);
  std::string engine_key =
      GenerateEngineKey(feed_vars, fetch_vars, ops->size());
  for (auto it = intervals.rbegin(); it != intervals.rend(); ++it) {
    SubstituteNgraphOp(ops, engine_key, "", *it);
B
baojun 已提交
214 215 216 217 218
  }
}

NgraphEngine::NgraphEngine(const framework::Scope& scope,
                           const platform::Place& place,
219
                           const framework::ExecutionContext& ctx)
B
baojun 已提交
220
    : scope_(scope), place_(place) {
221 222 223 224
  std::string serialized_graph = ctx.Attr<std::string>("graph");
  auto interval = ctx.Attr<std::vector<int>>("interval");
  std::string engine_key = ctx.Attr<std::string>("engine_key");

B
baojun 已提交
225 226 227 228 229 230
  var_in_node_map_ = std::make_shared<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

  var_node_map_ = std::make_shared<
      std::unordered_map<std::string, std::shared_ptr<ngraph::Node>>>();

231
  GetNgFunction(engine_key, interval);
B
baojun 已提交
232 233
}

234
void NgraphEngine::Prepare(const std::vector<int>& interval) {
B
baojun 已提交
235
  bool has_fetch = false, is_full = false;
236
  for (auto& var : p_bdesc->AllVars()) {
B
baojun 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    if (!(var->GetType() == framework::proto::VarType::SELECTED_ROWS ||
          var->GetType() == framework::proto::VarType::LOD_TENSOR ||
          var->GetType() == framework::proto::VarType::LOD_TENSOR_ARRAY)) {
      continue;
    }

    auto var_name = var->Name();
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }

    if (var_name != framework::kFeedOpType &&
        var_name != framework::kFetchOpType) {
      auto pd_type = var->GetDataType();
      if (pd2ng_type_map.find(pd_type) == pd2ng_type_map.end()) {
        PADDLE_THROW("Data type of var %s not found in pd2ng_type_map",
                     var_name);
      }
      var_type_map_[var_name] = pd2ng_type_map[pd_type];
    }

    if (var->Persistable()) {
      persistables_.insert(var->Name());
    }
  }

263 264 265
  std::vector<paddle::framework::OpDesc*> ops_desc;
  for (auto op_desc : p_bdesc->AllOps()) {
    ops_desc.emplace_back(op_desc);
B
baojun 已提交
266 267 268
    if (op_desc->Type() == framework::kFetchOpType) {
      has_fetch = true;
    }
B
baojun 已提交
269 270
  }

271
  for (auto op_desc : ops_desc) {
B
baojun 已提交
272
    if (op_desc->Type().find("_grad") != std::string::npos) {
273
      this->is_test_ = false;
B
baojun 已提交
274 275 276 277
      break;
    }
  }

278 279 280
  if (interval[0] > 0 &&
      ops_desc.at(interval[0] - 1)->Type() == framework::kFeedOpType &&
      interval[1] < static_cast<int>(ops_desc.size()) &&
B
baojun 已提交
281 282
      ops_desc.at(interval[1])->Type() == framework::kFetchOpType) {
    is_full = true;
B
baojun 已提交
283 284
  }

B
baojun 已提交
285
  if (is_full) {
286 287 288 289
    this->op_state_ = this->is_test_ ? OpState::FULL_TEST : OpState::FULL_TRAIN;
  } else {
    this->op_state_ =
        this->is_test_ ? OpState::PARTIAL_TEST : OpState::PARTIAL_TRAIN;
B
baojun 已提交
290 291
  }

292 293 294 295 296 297
  int idx = interval[0];
  while (idx < interval[1]) {
    this->fused_ops_.emplace_back(
        framework::OpRegistry::CreateOp(*(ops_desc[idx])));
    ++idx;
  }
B
baojun 已提交
298 299
  while (idx < static_cast<int>(ops_desc.size()) &&
         ops_desc.at(idx)->Type() != framework::kFetchOpType) {
300 301
    auto op_desc = ops_desc.at(idx);
    for (auto& var_name_item : op_desc->Inputs()) {
B
baojun 已提交
302
      for (auto& var_name : var_name_item.second) {
303
        this->post_op_inputs_.insert(var_name);
B
baojun 已提交
304 305
      }
    }
306
    ++idx;
B
baojun 已提交
307
  }
308

B
baojun 已提交
309 310 311 312
  if (!has_fetch) {
    op_state_ = OpState::UNKNOWN;
  }

313
  BuildNgIO(ops_desc, interval);
B
baojun 已提交
314 315
}

316 317
void NgraphEngine::BuildNgIO(const std::vector<framework::OpDesc*>& ops_desc,
                             const std::vector<int>& interval) {
B
baojun 已提交
318 319
  std::unordered_set<std::string> inputs;
  std::unordered_set<std::string> outputs;
320 321
  for (int i = interval[0]; i < interval[1]; ++i) {
    auto op = ops_desc[i];
B
baojun 已提交
322 323 324 325 326 327
    for (auto& var_name_item : op->Inputs()) {
      for (auto& var_name : var_name_item.second) {
        inputs.insert(var_name);
        const bool is_output = outputs.find(var_name) != outputs.end();
        if (!is_output &&
            std::find(var_in_.begin(), var_in_.end(), var_name) ==
328 329
                var_in_.end() &&
            scope_.FindVar(var_name)) {
B
baojun 已提交
330
          // fill var_in here to keep lhs and rhs order
331
          this->var_in_.emplace_back(var_name);
B
baojun 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
        }
      }
    }

    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
        outputs.insert(var_name);
      }
    }
  }

  // var_out.clear();
347 348
  for (int i = interval[0]; i < interval[1]; ++i) {
    auto op = ops_desc[i];
B
baojun 已提交
349 350 351 352 353
    for (auto& var_name_item : op->Outputs()) {
      PADDLE_ENFORCE_LE(var_name_item.second.size(), 1,
                        "op %s has more than 1 output - Not handling yet",
                        op->Type());
      for (auto& var_name : var_name_item.second) {
354
        switch (this->op_state_) {
B
baojun 已提交
355 356
          case OpState::PARTIAL_TEST:
            if (post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
357 358 359
                find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                    fetch_vars.end()) {
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
360 361 362
            }
            break;
          case OpState::FULL_TEST:
363 364 365
            if (find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                fetch_vars.end()) {
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
366 367 368
            }
            break;
          case OpState::PARTIAL_TRAIN:
369 370
            if (find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                    fetch_vars.end() ||
B
baojun 已提交
371 372
                post_op_inputs_.find(var_name) != post_op_inputs_.end() ||
                persistables_.find(var_name) != persistables_.end()) {
373
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
374 375 376
            }
            break;
          case OpState::FULL_TRAIN:
377 378
            if (find(fetch_vars.begin(), fetch_vars.end(), var_name) !=
                    fetch_vars.end() ||
B
baojun 已提交
379
                persistables_.find(var_name) != persistables_.end()) {
380
              this->var_out_.emplace_back(var_name);
B
baojun 已提交
381 382 383
            }
            break;
          default:
384
            this->var_out_.emplace_back(var_name);
B
baojun 已提交
385 386 387 388
        }
      }
    }
  }
B
baojun 已提交
389

390 391 392 393 394 395
  for (size_t i = 0; i < var_in_.size(); ++i) {
    auto var_name = var_in_[i];
    if (persistables_.find(var_name) == persistables_.end()) {
      var_in_updates_.emplace_back(i);
    }
  }
B
baojun 已提交
396 397
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
void NgraphEngine::GetNgInputShape() {
  for (auto& var_name : var_in_) {
    auto* var = scope_.FindVar(var_name);
    if (var && var->IsType<framework::LoDTensor>()) {
      auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      auto sp = Ddim2Shape(tensor_pd->dims());
      auto ng_type = var_type_map_[var_name];
      auto prm = std::make_shared<ngraph::op::Parameter>(ng_type, sp, true);
      (*var_node_map_)[var_name] = prm;
      (*var_in_node_map_)[var_name] = prm;
    }
  }
}

void NgraphEngine::BuildNgNodes() {
  for (auto& op : fused_ops_) {
    for (auto& var_name_item : op->Outputs()) {
      for (auto& var_name : var_name_item.second) {
        if (var_node_map_->find(var_name) == var_node_map_->end()) {
          auto* var = scope_.FindVar(var_name);
          if (var && var->IsType<framework::LoDTensor>()) {
            auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
            auto& ddim = tensor_pd->dims();
            auto ng_shape = Ddim2Shape(ddim);
            auto ng_type = var_type_map_[var_name];
            auto prm = std::make_shared<ngraph::op::Parameter>(ng_type,
                                                               ng_shape, true);
            (*var_node_map_)[var_name] = prm;
          }
        }
      }
    }
  }

  NgraphBridge ngb(var_node_map_);
  for (auto& op : fused_ops_) {
    ngb.BuildNgNode(op);
  }
}

void NgraphEngine::RunInferShape() {
  for (auto& op : fused_ops_) {
    framework::RuntimeContext ctx(op->Inputs(), op->Outputs(), scope_);
    op->RuntimeInferShape(scope_, place_, ctx);
  }
}

void NgraphEngine::BuildNgFunction(const std::vector<int>& interval) {
  Prepare(interval);
  RunInferShape();
  GetNgInputShape();
B
baojun 已提交
449 450 451 452 453 454
  BuildNgNodes();
  ngraph_function_ = nullptr;
  ngraph::NodeVector func_outputs;
  ngraph::ParameterVector func_inputs;

  for (auto& vo : var_out_) {
455
    func_outputs.emplace_back(var_node_map_->at(vo));
B
baojun 已提交
456 457 458 459 460 461
  }

  for (auto& vi : var_in_) {
    std::shared_ptr<ngraph::op::Parameter> prm =
        std::dynamic_pointer_cast<ngraph::op::Parameter>(
            var_in_node_map_->at(vi));
462
    func_inputs.emplace_back(prm);
B
baojun 已提交
463 464 465 466 467 468
  }

  ngraph_function_ =
      std::make_shared<ngraph::Function>(func_outputs, func_inputs);
}

469 470 471 472 473 474 475 476 477 478 479 480 481
void NgraphEngine::GetNgFunction(std::string engine_key,
                                 const std::vector<int>& interval) {
  bool use_cache = true;
  if (use_cache) {
    this->func_cache_key_ = "";
    for (int i = 0; i < std::min(static_cast<int>(feed_vars.size()), 10); ++i) {
      auto* var = scope_.FindVar(feed_vars[i]);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetLoDTensorOrSelectedRowsValueFromVar(*var);
        auto dims = tensor_pd->dims();
        for (int j = 0; j < dims.size(); ++j) {
          func_cache_key_ += std::to_string(dims[j]);
        }
B
baojun 已提交
482 483
      }
    }
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
    func_cache_key_ += std::to_string(interval[0]) + "_" +
                       std::to_string(interval[1]) + engine_key;
    func_cache_key_ = std::to_string(std::hash<std::string>()(func_cache_key_));

    if (engine_cache.find(func_cache_key_) != engine_cache.end()) {
      if (engine_cache[func_cache_key_].persistables.size() == 0) {
        engine_cache.clear();
        t_in_cache_.clear();
      } else {
        auto var_name = engine_cache[func_cache_key_].persistables.begin();
        framework::Variable* var = scope_.FindVar(*var_name);
        if (var != pre_var_ptr) {
          engine_cache.clear();
          t_in_cache_.clear();
        }
        pre_var_ptr = var;
      }
    }

    if (engine_cache.find(func_cache_key_) == engine_cache.end()) {
      BuildNgFunction(interval);
      engine_cache[func_cache_key_].ngraph_function = this->ngraph_function_;
      engine_cache[func_cache_key_].persistables = this->persistables_;
      engine_cache[func_cache_key_].var_in_updates = this->var_in_updates_;
      engine_cache[func_cache_key_].var_in = this->var_in_;
      engine_cache[func_cache_key_].var_out = this->var_out_;
      engine_cache[func_cache_key_].is_test = this->is_test_;
B
baojun 已提交
511 512
    }
  } else {
513
    BuildNgFunction(interval);
B
baojun 已提交
514 515 516 517 518
  }
}

void NgraphEngine::Run(const framework::Scope& scope,
                       const platform::Place& place) const {
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
  std::shared_ptr<ngraph::Function> ng_func;
  const std::set<std::string>* p_persistables;
  const std::vector<size_t>* p_var_in_updates;
  const std::vector<std::string>* p_var_in;
  const std::vector<std::string>* p_var_out;
  bool is_test;

  bool use_cache = true;
  if (use_cache) {
    PADDLE_ENFORCE(engine_cache.find(func_cache_key_) != engine_cache.end(),
                   "Cannot find cached data to run ngraph function");
    ng_func = engine_cache[func_cache_key_].ngraph_function;
    p_persistables = &(engine_cache[func_cache_key_].persistables);
    p_var_in_updates = &(engine_cache[func_cache_key_].var_in_updates);
    p_var_in = &(engine_cache[func_cache_key_].var_in);
    p_var_out = &(engine_cache[func_cache_key_].var_out);
    is_test = engine_cache[func_cache_key_].is_test;
  } else {
    ng_func = ngraph_function_;
    p_persistables = &this->persistables_;
    p_var_in_updates = &this->var_in_updates_;
    p_var_in = &this->var_in_;
    p_var_out = &this->var_out_;
    is_test = this->is_test_;
  }
B
baojun 已提交
544

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>>* p_t_in;
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_in = {};

  auto m_parameters = ng_func->get_parameters();
  auto m_results = ng_func->get_results();
  if (is_test && use_cache &&
      t_in_cache_.find(func_cache_key_) != t_in_cache_.end()) {
    p_t_in = &(t_in_cache_[func_cache_key_]);
    for (size_t i = 0; i < p_var_in_updates->size(); ++i) {
      int index = p_var_in_updates->at(i);
      auto vi = p_var_in->at(index);
      auto sp = m_parameters[index]->get_shape();
      auto ng_type = m_parameters[index]->get_element_type();
      std::shared_ptr<ngraph::runtime::Tensor> ti;
      auto* var = scope.FindVar(vi);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
        void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
        ti = backend_->create_tensor(ng_type, sp, pd_arr);
        (*p_t_in)[index] = ti;
B
baojun 已提交
565
      } else {
566
        PADDLE_THROW("Cannot find var or tensor with var name %s", vi);
B
baojun 已提交
567
      }
568 569 570 571
    }
  } else {
    if (is_test && use_cache) {
      p_t_in = &(t_in_cache_[func_cache_key_]);
B
baojun 已提交
572
    } else {
573
      p_t_in = &t_in;
B
baojun 已提交
574
    }
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

    for (size_t i = 0; i < p_var_in->size(); ++i) {
      auto vi = p_var_in->at(i);
      auto sp = m_parameters[i]->get_shape();
      auto ng_type = m_parameters[i]->get_element_type();
      std::shared_ptr<ngraph::runtime::Tensor> ti;
      auto* var = scope.FindVar(vi);
      if (var && var->IsType<framework::LoDTensor>()) {
        auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
        void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
        PADDLE_ENFORCE(sp == Ddim2Shape(tensor_pd->dims()),
                       "Ensure ngraph tensor layout align with paddle tensor");
        ti = backend_->create_tensor(ng_type, sp, pd_arr);
      } else {
        PADDLE_THROW("Cannot find var or tensor with var name %s", vi);
      }
      bool is_persistable =
          (p_persistables->find(vi) != p_persistables->end()) ? true : false;
      if (is_test && is_persistable) {
        ti->set_stale(false);
      }
      (*p_t_in).emplace_back(ti);
B
baojun 已提交
597 598 599
    }
  }

600 601 602
  std::vector<std::shared_ptr<ngraph::runtime::Tensor>> t_out = {};
  for (size_t i = 0; i < p_var_out->size(); ++i) {
    auto vo = p_var_out->at(i);
B
baojun 已提交
603 604
    auto* var = scope.FindVar(vo);
    if (var && var->IsType<framework::LoDTensor>()) {
605 606
      auto sp = m_results[i]->get_shape();
      var->GetMutable<framework::LoDTensor>()->Resize(Shape2Ddim(sp));
B
baojun 已提交
607
      auto* tensor_pd = GetMutableLoDTensorOrSelectedRowsValueFromVar(var);
608 609 610 611 612
      auto ng_type = m_results[i]->get_element_type();
      void* pd_arr = tensor_pd->mutable_data(place, ng2pd_type_map[ng_type]);
      std::shared_ptr<ngraph::runtime::Tensor> to =
          backend_->create_tensor(ng_type, sp, pd_arr);
      t_out.emplace_back(to);
B
baojun 已提交
613 614 615 616 617
    } else {
      PADDLE_THROW("Cannot find var or tensor with var name %s", vo);
    }
  }

618 619
  auto handle = backend_->compile(ng_func);
  handle->call_with_validate(t_out, *p_t_in);
B
baojun 已提交
620 621 622
}  // NgraphEngine::Run
}  // namespace operators
}  // namespace paddle