backward.yaml 59.3 KB
Newer Older
1 2 3 4
- backward_api : abs_grad
  forward : abs (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
5
  infer_meta :
6
    func : UnchangedInferMeta
7
    param : [x]
8
  kernel :
9
    func : abs_grad
10 11
  data_transform:
    skip_transform : out_grad
12

13 14 15 16
- backward_api : acos_grad
  forward : acos (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
17
  infer_meta :
18 19
    func : UnchangedInferMeta
    param : [x]
20
  kernel :
21
    func : acos_grad
22

23 24 25
- backward_api : acosh_grad
  forward : acosh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
26
  output : Tensor(x_grad)
27 28 29 30 31
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : acosh_grad
32

33 34 35 36 37 38 39 40 41 42 43 44
- backward_api : add_double_grad
  forward : add_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : add_double_grad
  optional : grad_x_grad, grad_y_grad
  backward : add_triple_grad

H
hong 已提交
45 46
- backward_api : add_grad
  forward : add (Tensor x, Tensor y) -> Tensor(out)
H
hong 已提交
47
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
H
hong 已提交
48 49 50 51 52 53
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : add_grad
54
  no_need_buffer : x, y
55
  backward : add_double_grad
H
hong 已提交
56

57 58 59
- backward_api : add_n_grad
  forward : add_n (Tensor[] x) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad)
60
  output : Tensor[](x_grad){x.size()}
61 62 63
  invoke : add_n_grad_impl(x, out_grad)
  no_need_buffer : x

64 65 66 67 68 69 70 71 72 73
- backward_api : add_triple_grad
  forward : add_double_grad (Tensor y, Tensor grad_out, Tensor grad_grad_x, Tensor grad_grad_y, int axis = -1) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_x, Tensor grad_grad_y, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(grad_grad_x_grad), Tensor(grad_grad_y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [grad_grad_x, grad_grad_y]
  kernel :
    func : add_triple_grad

74
- backward_api : addmm_grad
H
hong 已提交
75
  forward : addmm (Tensor input, Tensor x, Tensor y, float alpha, float beta) -> Tensor(out)
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  args : (Tensor input, Tensor x, Tensor y, Tensor out_grad, float alpha, float beta)
  output : Tensor(input_grad), Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [input, x, y]
  kernel :
    func : addmm_grad

- backward_api : argsort_grad
  forward : argsort (Tensor x, int axis, bool descending) -> Tensor(out), Tensor(indices)
  args : (Tensor indices, Tensor x, Tensor out_grad, int axis, bool descending)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : argsort_grad
H
hong 已提交
93
  no_need_buffer : x
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

- backward_api : asin_grad
  forward : asin (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : asin_grad

- backward_api : asinh_grad
  forward : asinh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : asinh_grad

115 116 117 118 119 120 121 122 123 124
- backward_api : assign_grad
  forward : assign (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : assign

125
- backward_api : atan2_grad
126
  forward : atan2 (Tensor x, Tensor y) -> Tensor(out)
127
  args : (Tensor x, Tensor y, Tensor out_grad)
H
hong 已提交
128 129 130 131 132
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
133
    func : atan2_grad
H
hong 已提交
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
- backward_api : atan_grad
  forward : atan (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : atan_grad

- backward_api : atanh_grad
  forward : atanh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : atanh_grad

H
hong 已提交
155 156 157 158 159 160 161 162 163 164 165 166
- backward_api : batch_norm_grad
  forward : batch_norm (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) -> Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space)
  args : (Tensor x, Tensor scale, Tensor bias, Tensor mean_out, Tensor variance_out, Tensor saved_mean, Tensor saved_variance, Tensor reserve_space, Tensor out_grad, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu)
  output : Tensor(x_grad), Tensor(scale_grad), Tensor(bias_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, scale, bias]
  kernel :
    func : batch_norm_grad
    data_type : out_grad
  optional : mean_out, variance_out, reserve_space

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
- backward_api : bce_loss_grad
  forward : bce_loss (Tensor input, Tensor label) -> Tensor(out)
  args : (Tensor input, Tensor label, Tensor out_grad)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : bce_loss_grad

- backward_api : brelu_grad
  forward : brelu (Tensor x, float t_min, float t_max) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float t_min, float t_max)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : brelu_grad

- backward_api : cast_grad
  forward : cast (Tensor x, DataType out_dtype) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : cast_grad
    data_type : out_grad

198 199 200 201 202 203 204 205 206 207
- backward_api : ceil_grad
  forward : ceil(Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : ceil_grad

208 209 210 211 212 213 214 215 216 217 218
- backward_api : cholesky_grad
  forward : cholesky (Tensor x, bool upper) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, bool upper)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : cholesky_grad

- backward_api : cholesky_solve_grad
219
  forward : cholesky_solve (Tensor x, Tensor y, bool upper) -> Tensor(out)
220
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, bool upper)
H
hong 已提交
221 222 223 224 225
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
226 227
    func : cholesky_solve_grad

C
chentianyu03 已提交
228 229 230 231 232 233 234 235 236 237
- backward_api : clip_grad
  forward : clip (Tensor x, Scalar min, Scalar max) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, Scalar min = 0., Scalar max = 0.)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : clip_grad

238 239 240
- backward_api : concat_grad
  forward : concat (Tensor[] x, Scalar axis) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, Scalar axis = 0)
241 242 243 244 245 246
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : UnchangedMultiInferMeta
    param : [x]
  kernel :
    func : concat_grad
247
  no_need_buffer : x
248

249 250 251 252 253 254 255 256 257 258
- backward_api : conj_grad
  forward : conj (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : conj

H
hong 已提交
259 260 261 262 263
- backward_api : conv2d_grad
  forward : conv2d (Tensor input, Tensor filter, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) -> Tensor(out)
  args : (Tensor input, Tensor filter, Tensor out_grad,  int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search)
  output : Tensor(input_grad), Tensor(filter_grad)
  invoke : conv2d_grad_impl(input, filter, out_grad,  strides, paddings, paddding_algorithm, groups, dilations, data_format, use_addto, workspace_size_MB, exhaustive_search)
264 265 266 267 268 269 270 271 272 273 274 275 276
  backward : conv2d_grad_grad

- backward_api : conv2d_grad_grad
  forward : conv2d_grad (Tensor input, Tensor filter, Tensor grad_out,  int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) -> Tensor(grad_input), Tensor(grad_filter)
  args : (Tensor input, Tensor filter, Tensor grad_out, Tensor grad_input_grad, Tensor grad_filter_grad, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search)
  output : Tensor(input_grad), Tensor(filter_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param: [input, filter, grad_out]
  kernel :
    func : conv2d_grad_grad
    use_cudnn : true
  optional : grad_input_grad, grad_filter_grad
H
hong 已提交
277

F
From00 已提交
278 279 280 281 282 283
- backward_api : conv2d_transpose_grad
  forward : conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
    func : ConvTransposeGradInferMeta
284
  kernel :
F
From00 已提交
285 286 287 288 289 290 291 292 293 294 295
    func : conv2d_transpose_grad

- backward_api : conv3d_transpose_grad
  forward : conv3d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
    func : ConvTransposeGradInferMeta
  kernel :
    func : conv3d_transpose_grad

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
- backward_api : cos_grad
  forward : cos (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : cos_grad

- backward_api : cosh_grad
  forward : cosh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : cosh_grad

316 317 318 319 320 321 322 323 324 325
- backward_api : cross_entropy_with_softmax_grad
  forward : cross_entropy_with_softmax (Tensor input, Tensor label, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis) -> Tensor(softmax), Tensor(loss)
  args : (Tensor label, Tensor softmax, Tensor loss_grad, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis)
  output : Tensor(input_grad)
  infer_meta :
    func : CrossEntropyWithSoftmaxGradInferMeta
  kernel :
    func : cross_entropy_with_softmax_grad
    data_type : softmax

326 327 328 329 330 331 332 333 334 335
- backward_api : cross_grad
  forward : cross (Tensor x, Tensor y, int axis = 9) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : cross_grad

336 337 338 339 340 341 342 343 344 345
- backward_api : cumprod_grad
  forward : cumprod (Tensor x, int dim) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int dim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : cumprod_grad

346 347 348 349 350 351 352 353 354
- backward_api : cumsum_grad
  forward : cumsum(Tensor x, int axis, bool flatten, bool exclusive, bool reverse) -> Tensor(out)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  args : (Tensor out_grad, int axis, bool flatten, bool exclusive, bool reverse)
  output : Tensor(x_grad)
  invoke : cumsum(out_grad, axis, flatten, exclusive, !reverse)

355 356 357 358 359 360 361 362 363 364
- backward_api : deformable_conv_grad
  forward : deformable_conv(Tensor x, Tensor offset, Tensor filter, Tensor mask, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) -> Tensor(out)
  args : (Tensor x, Tensor offset, Tensor filter, Tensor mask, Tensor out_grad, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step)
  output : Tensor(x_grad), Tensor(offset_grad), Tensor(filter_grad), Tensor(mask_grad)
  infer_meta :
    func : DeformableConvGradInferMeta
  kernel :
    func : deformable_conv_grad
  optional : mask

F
From00 已提交
365 366 367 368 369 370 371 372 373
- backward_api : depthwise_conv2d_transpose_grad
  forward : depthwise_conv2d_transpose(Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor filter, Tensor out_grad, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format)
  output : Tensor(x_grad), Tensor(filter_grad)
  infer_meta :
    func : ConvTransposeGradInferMeta
  kernel :
    func : depthwise_conv2d_transpose_grad

374 375 376 377 378 379 380 381 382 383
- backward_api : det_grad
  forward : det (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : determinant_grad

384 385 386 387 388 389 390 391 392
- backward_api : diagonal_grad
  forward : diagonal (Tensor x, int offset, int axis1, int axis2) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int offset = 0, int axis1 = 0, int axis2 = 1)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : diagonal_grad
H
hong 已提交
393
  no_need_buffer : x
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

- backward_api : digamma_grad
  forward : digamma (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : digamma_grad

- backward_api : dist_grad
  forward : dist (Tensor x, Tensor y, float p) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, float p)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : dist_grad
H
hong 已提交
414 415 416

- backward_api : divide_grad
  forward : divide (Tensor x, Tensor y) -> Tensor(out)
0
0x45f 已提交
417
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, int axis = -1)
H
hong 已提交
418 419 420 421 422 423 424
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : divide_grad

H
hong 已提交
425 426 427 428 429 430 431 432 433 434 435
- backward_api : dropout_grad
  forward : dropout (Tensor x, Tensor seed_tensor, float p, bool is_test, str mode, int seed, bool fix_seed) -> Tensor(out), Tensor(mask)
  args : (Tensor mask, Tensor out_grad, float p, bool is_test, str mode)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : dropout_grad
  optional : seed_tensor

436 437 438 439 440 441 442 443 444
- backward_api : eigh_grad
  forward : eigh (Tensor x, str uplo) -> Tensor(out_w), Tensor(out_v)
  args : (Tensor out_w, Tensor out_v, Tensor out_w_grad, Tensor out_v_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_v]
  kernel :
    func : eigh_grad
H
hong 已提交
445

446 447 448 449 450 451 452 453 454 455
- backward_api : elementwise_pow_grad
  forward : elementwise_pow(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : elementwise_pow_grad

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
- backward_api : elu_grad
  forward : elu (Tensor x, float alpha) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, float alpha)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : elu_grad

- backward_api : erf_grad
  forward : erf (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : erf_grad
    data_type : out_grad

- backward_api : erfinv_grad
478
  forward : erfinv (Tensor x) -> Tensor(out)
479 480 481 482 483 484 485 486
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : erfinv_grad

487 488 489 490 491 492 493 494 495 496
- backward_api : exp_grad
  forward : exp (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : exp_grad

H
hong 已提交
497 498 499 500 501 502 503 504 505
- backward_api : expand_as_grad
  forward : expand_as (Tensor x, Tensor y, int[] target_shape) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] target_shape)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : expand_as_grad
506
  no_need_buffer : x
507

508 509 510 511 512 513 514 515 516 517
- backward_api : expand_grad
  forward : expand (Tensor x, IntArray shape) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray shape)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : expand_grad

518 519 520 521 522 523 524 525 526 527
- backward_api : expm1_grad
  forward : expm1 (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : expm1_grad

528 529 530 531 532 533 534 535 536 537 538 539
- backward_api : flatten_grad
  forward : flatten(Tensor x, int start_axis, int stop_axis) -> Tensor(out), Tensor(xshape)
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func :  KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : flatten_grad
    data_type: out_grad
    backend: out_grad
    layout: out_grad
540
  no_need_buffer : x
541

542 543 544 545 546 547 548 549 550 551
- backward_api : flip_grad
  forward : flip (Tensor x, int[] axis) -> Tensor(out)
  args : (Tensor out_grad, int[] axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : flip

552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
- backward_api : floor_grad
  forward : floor(Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : floor_grad

- backward_api : fmax_grad
  forward : fmax(Tensor x, Tensor y, int axis) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmax_grad

- backward_api : fmin_grad
  forward : fmin(Tensor x, Tensor y, int axis) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : fmin_grad

F
From00 已提交
582 583 584 585 586 587 588 589 590 591
- backward_api : frobenius_norm_grad
  forward : frobenius_norm(Tensor x, int64_t[] axis,  bool keep_dim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keep_dim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : frobenius_norm_grad

592 593 594 595 596 597 598 599 600 601
- backward_api : gather_grad
  forward : gather(Tensor x, Tensor index, Scalar axis=0) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, Scalar axis=0, bool overwrite=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    data_type: x
    func : gather_grad
602
  no_need_buffer : x
603

604 605 606 607 608 609 610 611 612
- backward_api : gather_nd_grad
  forward : gather_nd (Tensor x, Tensor index) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : gather_nd_grad
613
  no_need_buffer : x
614

615 616 617 618 619 620 621 622 623 624
- backward_api : gelu_grad
  forward : gelu(Tensor x,  bool approximate) -> Tensor(out)
  args : (Tensor x, Tensor out_grad,  bool approximate)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : gelu_grad

H
hong 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
- backward_api : graph_send_recv_grad
  forward : graph_send_recv (Tensor x, Tensor src_index, Tensor dst_index, str pool_type = "SUM", int64_t out_size = 0) -> Tensor(out), Tensor(dst_count)
  args : (Tensor x, Tensor src_index, Tensor dst_index, Tensor out, Tensor dst_count, Tensor out_grad, str pool_type = "SUM")
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : graph_send_recv_grad
  optional: out, dst_count

- backward_api : gumbel_softmax_grad
  forward : gumbel_softmax (Tensor x, float temperature, bool hard, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : GumbelSoftmaxGradInferMeta
    param : [out, out_grad, axis]
  kernel :
    func : gumbel_softmax_grad

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
- backward_api : hard_shrink_grad
  forward : hard_shrink (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : hard_shrink_grad

- backward_api : hard_sigmoid_grad
  forward : hard_sigmoid (Tensor x, float slope, float offset) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, float slope, float offset)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : hard_sigmoid_grad

Y
YuanRisheng 已提交
666 667 668 669 670 671 672 673 674 675
- backward_api : hard_swish_grad
  forward : hard_swish (Tensor x, float threshold = 6.0, float scale = 6.0, float offset = 3.0) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold, float scale, float offset)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : hard_swish_grad

676 677 678 679 680 681 682 683 684 685
- backward_api : huber_loss_grad
  forward : huber_loss (Tensor input, Tensor label, float delta) -> Tensor(out), Tensor(residual)
  args : (Tensor residual, Tensor out_grad, float delta)
  output : Tensor(input_grad), Tensor(label_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [residual, residual]
  kernel :
    func : huber_loss_grad

Z
zyfncg 已提交
686 687 688 689 690 691
- backward_api : imag_grad
  forward : imag (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  invoke : imag_grad_impl(out_grad)

692 693 694 695 696 697 698 699 700 701
- backward_api : index_sample_grad
  forward : index_sample (Tensor x, Tensor index) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : index_sample_grad
    data_type : out_grad
H
hong 已提交
702
  no_need_buffer : x
703

F
From00 已提交
704 705 706 707 708 709 710 711 712 713
- backward_api : index_select_grad
  forward : index_select(Tensor x, Tensor index,  int dim) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad,  int dim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : index_select_grad
    data_type : x
714
  no_need_buffer : x
F
From00 已提交
715

716 717 718 719 720 721 722 723 724
- backward_api : kldiv_loss_grad
  forward : kldiv_loss(Tensor x, Tensor label, str reduction) -> Tensor(out)
  args : (Tensor x, Tensor label, Tensor out_grad, str reduction)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : kldiv_loss_grad
725
  no_need_buffer : x
726

Y
YuanRisheng 已提交
727 728 729 730 731 732 733 734 735 736 737
- backward_api : kron_grad
  forward : kron (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : kron_grad
    data_type : out_grad

738 739 740 741 742 743 744 745 746 747
- backward_api : kthvalue_grad
  forward : kthvalue(Tensor x, int k, int axis, bool keepdim) -> Tensor(out), Tensor(indices)
  args : (Tensor x, Tensor indices, Tensor out_grad, int k, int axis, bool keepdim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : kthvalue_grad

748 749 750 751 752 753 754 755 756 757 758
- backward_api : label_smooth_grad
  forward : label_smooth (Tensor label, Tensor prior_dist, float epsilon) -> Tensor(out)
  args : (Tensor out_grad, float epsilon)
  output : Tensor(label_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : label_smooth_grad
  optional : prior_dist

759 760 761 762 763 764 765 766 767 768
- backward_api : leaky_relu_double_grad
  forward : leaky_relu_grad (Tensor x, Tensor grad_out, float alpha) -> Tensor(grad_x)
  args : (Tensor x, Tensor grad_x_grad, float alpha)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_x_grad]
  kernel :
    func : leaky_relu_double_grad

769 770 771 772 773 774 775 776 777
- backward_api : leaky_relu_grad
  forward : leaky_relu (Tensor x, float alpha) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float alpha)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : leaky_relu_grad
778
  backward : leaky_relu_double_grad
779 780

- backward_api : lerp_grad
781
  forward : lerp (Tensor x, Tensor y, Tensor weight) -> Tensor(out)
782 783 784 785 786 787 788 789
  args : (Tensor x, Tensor y, Tensor weight, Tensor out, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : lerp_grad

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
- backward_api : lgamma_grad
  forward : lgamma(Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : lgamma_grad

- backward_api : log10_grad
  forward : log10 (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log10_grad

- backward_api : log1p_grad
  forward : log1p (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log1p_grad

- backward_api : log2_grad
  forward : log2 (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log2_grad

- backward_api : log_grad
  forward : log (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : log_grad

840 841 842 843 844 845 846 847 848 849
- backward_api : log_loss_grad
  forward : log_loss (Tensor input, Tensor label, float epsilon) -> Tensor(out)
  args : (Tensor input, Tensor label, Tensor out_grad, float epsilon)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : log_loss_grad

850 851 852 853 854 855 856 857 858 859
- backward_api : log_softmax_grad
  forward : log_softmax(Tensor x,  int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad,  int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out]
  kernel :
    func : log_softmax_grad

Y
YuanRisheng 已提交
860 861 862 863 864 865 866 867 868 869
- backward_api : logit_grad
  forward : logit (Tensor x, float eps = 1e-6f) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float eps)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : logit_grad

870 871
- backward_api : logsigmoid_grad
  forward : logsigmoid (Tensor x) -> Tensor(out)
H
hong 已提交
872 873 874
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
875 876 877 878 879
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : logsigmoid_grad

880 881 882 883 884 885 886 887 888 889
- backward_api : logsumexp_grad
  forward : logsumexp(Tensor x, int64_t[] axis,  bool keepdim,  bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis,  bool keepdim,  bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : logsumexp_grad

890 891 892 893 894 895 896 897 898 899
- backward_api : masked_select_grad
  forward : masked_select (Tensor x, Tensor mask) -> Tensor(out)
  args : (Tensor x, Tensor mask, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : masked_select_grad
    data_type : x
900
  no_need_buffer : x
901 902

- backward_api : matmul_double_grad
903 904 905
  forward : matmul_grad (Tensor x, Tensor y, Tensor grad_out, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
906 907
  infer_meta :
    func : GeneralTernaryGradInferMeta
908
    param : [x, y, grad_out]
909 910
  kernel :
    func : matmul_double_grad
911
  backward : matmul_triple_grad
912
  optional : grad_x_grad, grad_y_grad
913 914 915 916 917 918 919 920 921 922

- backward_api : matmul_grad
  forward : matmul (Tensor x, Tensor y, bool transpose_x=false, bool transpose_y=false) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : matmul_grad
923
  backward : matmul_double_grad
924

925 926 927 928 929 930 931 932 933 934 935
- backward_api : matmul_triple_grad
  forward : matmul_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, bool transpose_x=false, bool transpose_y=false) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out)
  args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, bool transpose_x=false, bool transpose_y=false)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad)
  infer_meta :
    func : GeneralQuinaryGradInferMeta
    param : [x, y, fwd_grad_out, fwd_grad_grad_x, fwd_grad_grad_y]
  kernel :
    func : matmul_triple_grad
  optional : grad_x_grad, grad_y_grad, grad_grad_out_grad

936 937 938 939 940 941 942 943 944 945
- backward_api : matrix_power_grad
  forward : matrix_power (Tensor x, int n) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int n)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : matrix_power_grad

946 947 948 949 950 951 952 953 954 955
- backward_api : max_grad
  forward: max (Tensor x,  int64_t[] dims={},  bool keep_dim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={},  bool keep_dim=false, bool reduce_all=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : max_grad

F
From00 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
- backward_api : max_pool2d_with_index_grad
  forward : max_pool2d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
  args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
  output : Tensor(x_grad)
  infer_meta :
    func : MaxPoolWithIndexGradInferMeta
  kernel :
    func : max_pool2d_with_index_grad

- backward_api : max_pool3d_with_index_grad
  forward : max_pool3d_with_index(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) -> Tensor(out), Tensor(mask)
  args : (Tensor x, Tensor mask, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive)
  output : Tensor(x_grad)
  infer_meta :
    func : MaxPoolWithIndexGradInferMeta
  kernel :
    func : max_pool3d_with_index_grad

974 975 976 977 978 979 980 981 982 983
- backward_api : maximum_grad
  forward : maximum(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : maximum_grad

984 985 986 987 988 989 990 991 992 993
- backward_api : maxout_grad
  forward : maxout(Tensor x, int groups, int axis) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int groups, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param: [x]
  kernel :
    func : maxout_grad

994 995 996 997 998 999 1000 1001 1002 1003
- backward_api : mean_all_grad
  forward : mean_all(Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_all_grad

1004 1005 1006 1007 1008 1009
- backward_api : mean_double_grad
  forward: mean_grad (Tensor x, Tensor grad_out, int64_t[] dims={},  bool keep_dim=false, bool reduce_all = false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int64_t[] dims={},  bool keep_dim=false, bool reduce_all=false)
  output : Tensor(grad_out_grad)
  invoke : mean(grad_x_grad, dims, keep_dim)

1010 1011 1012 1013 1014 1015 1016 1017 1018
- backward_api : mean_grad
  forward: mean (Tensor x,  int64_t[] dims={},  bool keep_dim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int64_t[] dims={},  bool keep_dim=false, bool reduce_all=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mean_grad
1019
  backward : mean_double_grad
1020
  no_need_buffer : x
1021

Y
YuanRisheng 已提交
1022 1023 1024
- backward_api : meshgrid_grad
  forward : meshgrid (Tensor[] inputs) -> Tensor[](outputs)
  args : (Tensor[] inputs, Tensor[] outputs_grad)
1025 1026 1027 1028 1029
  output : Tensor[](inputs_grad){inputs.size()}
  infer_meta :
    func : MeshgridGradInferMeta
  kernel :
    func : meshgrid_grad
Y
YuanRisheng 已提交
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
- backward_api : min_grad
  forward: min (Tensor x,  int64_t[] dims={},  bool keep_dim=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims={},  bool keep_dim=false, bool reduce_all=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : min_grad

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
- backward_api : minimum_grad
  forward : minimum(Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis=-1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, y]
  kernel :
    func : minimum_grad

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
- backward_api : mish_grad
  forward : mish (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : mish_grad

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
- backward_api : mode_grad
  forward : mode(Tensor x,  int axis,  bool keepdim) -> Tensor(out), Tensor(indices)
  args : (Tensor x, Tensor indices, Tensor out_grad,  int axis,  bool keepdim)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : mode_grad

1071
- backward_api : modulo_grad
1072
  forward : modulo (Tensor x, Tensor y) -> Tensor(out)
1073 1074 1075 1076 1077 1078 1079 1080 1081
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : modulo_grad
  no_need_buffer : x, y

1082 1083 1084
- backward_api : multi_dot_grad
  forward : multi_dot (Tensor[] x) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad)
1085 1086 1087 1088 1089
  output : Tensor[](x_grad) {x.size()}
  infer_meta :
    func : MultiDotGradInferMeta
  kernel :
    func : multi_dot_grad
1090 1091 1092 1093

- backward_api : multiplex_grad
  forward : multiplex (Tensor[] ins, Tensor ids) -> Tensor(out)
  args : (Tensor[] ins, Tensor ids, Tensor out_grad)
1094 1095 1096 1097 1098 1099 1100
  output : Tensor[](ins_grad){ins.size()}
  infer_meta :
    func : MultiplexGradInferMeta
    param : [ids, out_grad]
  kernel :
    func : multiplex_grad
    param : [ids, out_grad]
1101

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
- backward_api : multiply_double_grad
  forward : multiply_grad (Tensor x, Tensor y, Tensor grad_out, int axis = -1) -> Tensor(grad_x), Tensor(grad_y)
  args : (Tensor x, Tensor y, Tensor grad_out, Tensor grad_x_grad, Tensor grad_y_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(grad_out_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [x, y, grad_out]
  kernel :
    func : multiply_double_grad
  optional : grad_x_grad, grad_y_grad
1112
  backward : multiply_triple_grad
1113

1114 1115 1116 1117 1118 1119 1120 1121 1122
- backward_api : multiply_grad
  forward : multiply (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : multiply_grad
1123
  backward : multiply_double_grad
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
- backward_api : multiply_triple_grad
  forward : multiply_double_grad (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, int aixs = -1) -> Tensor(grad_x), Tensor(grad_y), Tensor(grad_grad_out)
  args : (Tensor x, Tensor y, Tensor fwd_grad_out, Tensor fwd_grad_grad_x, Tensor fwd_grad_grad_y, Tensor grad_x_grad, Tensor grad_y_grad, Tensor grad_grad_out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad), Tensor(fwd_grad_out_grad), Tensor(fwd_grad_grad_x_grad), Tensor(fwd_grad_grad_y_grad)
  infer_meta :
    func : GeneralQuinaryGradInferMeta
    param : [x, y, fwd_grad_out, x, y]
  kernel :
    func : multiply_triple_grad
  optional : fwd_grad_grad_x, fwd_grad_grad_y, grad_grad_out_grad

1136 1137 1138 1139 1140 1141 1142
- backward_api : mv_grad
  forward : mv (Tensor x, Tensor vec) -> Tensor(out)
  args : (Tensor x, Tensor vec, Tensor out_grad)
  output : Tensor(x_grad), Tensor(vec_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, vec]
H
hong 已提交
1143
  kernel :
1144
    func : mv_grad
H
hong 已提交
1145

1146
- backward_api : nll_loss_grad
Z
zyfncg 已提交
1147 1148 1149
  forward : nll_loss (Tensor input, Tensor label, Tensor weight, int64_t ignore_index, str reduction) -> Tensor(out), Tensor(total_weight)
  args : (Tensor input, Tensor label, Tensor weight, Tensor total_weight, Tensor out_grad, int64_t ignore_index, str reduction)
  output : Tensor(input_grad)
H
hong 已提交
1150
  infer_meta :
Z
zyfncg 已提交
1151
    func : NllLossGradInferMeta
H
hong 已提交
1152
  kernel :
1153
    func : nll_loss_grad
Z
zyfncg 已提交
1154
    data_type : input
1155
  optional : weight
H
hong 已提交
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
- backward_api : norm_grad
  forward : norm (Tensor x, int axis, float epsilon, bool is_test) -> Tensor(out), Tensor(norm)
  args : (Tensor x, Tensor norm, Tensor out_grad, int axis, float epsilon, bool is_test)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : norm_grad

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
- backward_api : p_norm_grad
  forward : p_norm(Tensor x,  float porder,  int axis,  float epsilon,  bool keepdim,  bool asvector=false) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad,  float porder,  int axis,  float epsilon,  bool keepdim,  bool asvector)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : p_norm_grad

- backward_api : pad3d_grad
  forward : pad3d(Tensor x, IntArray paddings, str mode,  float pad_value, str data_format) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray paddings, str mode,  float pad_value, str data_format)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pad3d_grad

1187 1188 1189 1190 1191 1192 1193 1194 1195
- backward_api : pixel_shuffle_grad
  forward : pixel_shuffle (Tensor x, int upscale_factor, str data_format) -> Tensor(out)
  args : (Tensor out_grad, int upscale_factor, str data_format)
  output : Tensor(x_grad)
  infer_meta :
    func : PixelShuffleGradInferMeta
  kernel :
    func : pixel_shuffle_grad

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
- backward_api : poisson_grad
  forward : poisson (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : poisson_grad

F
From00 已提交
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
- backward_api : pool2d_grad
  forward : pool2d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
  output : Tensor(x_grad)
  infer_meta :
    func : PoolGradInferMeta
  kernel :
    func : pool2d_grad

- backward_api : pool3d_grad
  forward : pool3d(Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm)
  output : Tensor(x_grad)
  infer_meta :
    func : PoolGradInferMeta
  kernel :
    func : pool3d_grad

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
- backward_api : pow_grad
  forward : pow(Tensor x, Scalar s) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, Scalar s=-1)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [x]
  kernel :
    func : pow_grad

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
- backward_api : prelu_grad
  forward : prelu(Tensor x, Tensor alpha, str data_format, str mode) -> Tensor(out)
  args : (Tensor x, Tensor alpha, Tensor out_grad, str data_format, str mode)
  output : Tensor(x_grad), Tensor(alpha_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param: [x, alpha]
  kernel :
    func : prelu_grad

1244
- backward_api : psroi_pool_grad
Z
zyfncg 已提交
1245 1246
  forward : psroi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, int output_channels, float spatial_scale)
1247 1248
  output : Tensor(x_grad)
  infer_meta :
Z
zyfncg 已提交
1249
    func : GeneralUnaryGradInferMeta
1250 1251
    param : [x]
  kernel :
1252
    func : psroi_pool_grad
Z
zyfncg 已提交
1253
  optional : boxes_num
1254 1255 1256 1257 1258 1259

# output is optional
- backward_api : put_along_axis_grad
  forward : put_along_axis (Tensor x, Tensor index, Tensor value, int axis, str reduce) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, int axis, str reduce)
  output : Tensor(x_grad), Tensor(value_grad)
H
hong 已提交
1260
  infer_meta :
1261 1262
    func : GeneralBinaryGradInferMeta
    param : [x, index]
H
hong 已提交
1263
  kernel :
1264
    func : put_along_axis_grad
H
hong 已提交
1265

Z
zyfncg 已提交
1266 1267 1268 1269 1270 1271
- backward_api : real_grad
  forward : real (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  invoke : real_grad_impl(out_grad)

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
- backward_api : reciprocal_grad
  forward : reciprocal (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : reciprocal_grad

H
hong 已提交
1282 1283 1284 1285 1286 1287 1288 1289
- backward_api : reduce_prod_grad
  forward : reduce_prod (Tensor x, int64_t[] dims, bool keep_dim, bool reduce_all) -> Tensor(out)
  args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] dims,  bool keep_dim, bool reduce_all)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
H
hong 已提交
1290
    func : prod_grad
H
hong 已提交
1291

1292 1293 1294
- backward_api : relu_double_grad
  forward : relu_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor grad_x_grad)
1295
  output : Tensor(grad_out_grad)
1296
  infer_meta :
1297 1298
    func : UnchangedInferMeta
    param : [out]
1299 1300 1301
  kernel :
    func : relu_double_grad

1302 1303 1304
- backward_api : relu_grad
  forward : relu (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
H
hong 已提交
1305 1306 1307
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
1308
    param : [out]
H
hong 已提交
1309
  kernel :
1310
    func : relu_grad
1311
  backward: relu_double_grad
H
hong 已提交
1312

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
- backward_api : reshape_double_grad
  forward : reshape_grad (Tensor xshape, Tensor grad_out) -> Tensor(grad_x)
  args : (Tensor grad_out, Tensor grad_x_grad)
  output : Tensor(grad_out_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [grad_out]
  kernel :
    func : reshape_double_grad

1323
- backward_api : reshape_grad
1324
  forward : reshape_with_xshape (Tensor x, IntArray shape) -> Tensor(out), Tensor(xshape)
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param : [xshape]
  kernel :
    func : reshape_grad
    param : [out_grad]
    data_type: out_grad
    backend: out_grad
    layout: out_grad
1336
  backward : reshape_double_grad
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
- backward_api : roi_align_grad
  forward : roi_align (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned) -> Tensor(out)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_align_grad
  optional : boxes_num

Z
zyfncg 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
- backward_api : roi_pool_grad
  forward : roi_pool (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale) -> Tensor(out), Tensor(arg_max)
  args : (Tensor x, Tensor boxes, Tensor boxes_num, Tensor arg_max, Tensor out_grad, int pooled_height, int pooled_width, float spatial_scale)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roi_pool_grad
  optional : boxes_num

F
From00 已提交
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
- backward_api : roll_grad
  forward : roll(Tensor x, IntArray shifts, int64_t[] axis) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray shifts, int64_t[] axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : roll_grad
    data_type : x
1370
  no_need_buffer : x
F
From00 已提交
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
- backward_api : round_grad
  forward : round(Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param: [out_grad]
  kernel :
    func : round_grad

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
- backward_api : rsqrt_grad
  forward : rsqrt (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : rsqrt_grad

- backward_api : scale_double_grad
  forward : scale_grad (Tensor grad_out, Scalar scale, float bias, bool bias_after_scale) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true)
  output : Tensor(grad_out_grad)
  invoke : scale(grad_x_grad, scale, 0.0, bias_after_scale)
  backward : scale_triple_grad

1399 1400
- backward_api : scale_grad
  forward : scale (Tensor x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(out)
1401
  args : (Tensor out_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true)
H
hong 已提交
1402
  output : Tensor(x_grad)
1403
  invoke : scale(out_grad, scale, 0.0, bias_after_scale)
1404 1405 1406 1407 1408 1409 1410
  backward : scale_double_grad

- backward_api : scale_triple_grad
  forward : scale_double_grad (Tensor grad_grad_x, Scalar scale, float bias, bool bias_after_scale) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_out_grad, Scalar scale=1.0, float bias=0.0, bool bias_after_scale=true)
  output : Tensor(grad_grad_x_grad)
  invoke : scale(grad_grad_out_grad, scale, 0.0, bias_after_scale)
H
hong 已提交
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420

- backward_api : scatter_grad
  forward : scatter (Tensor x, Tensor index, Tensor updates, bool overwrite) -> Tensor(out)
  args : (Tensor index, Tensor updates, Tensor out_grad, bool overwrite)
  output : Tensor(x_grad), Tensor(updates_grad)
  infer_meta :
    func : ScatterGradInferMeta
    param : [index, updates, out_grad, overwrite]
  kernel :
    func : scatter_grad
H
hong 已提交
1421
  no_need_buffer : updates
H
hong 已提交
1422 1423

- backward_api : scatter_nd_add_grad
1424
  forward : scatter_nd_add (Tensor x, Tensor index, Tensor updates) -> Tensor(out)
H
hong 已提交
1425 1426 1427 1428 1429 1430
  args : (Tensor index, Tensor updates, Tensor out_grad)
  output : Tensor(x_grad), Tensor(updates_grad)
  infer_meta :
    func : ScatterNdAddGradInferMeta
    param : [index, updates, out_grad]
  kernel :
1431
    func : scatter_nd_add_grad
H
hong 已提交
1432
  no_need_buffer : updates
H
hong 已提交
1433

1434 1435 1436 1437
- backward_api : segment_pool_grad
  forward : segment_pool (Tensor x, Tensor segment_ids, str pooltype) -> Tensor(out), Tensor(summed_ids)
  args : (Tensor x, Tensor segment_ids, Tensor out, Tensor summed_ids, Tensor out_grad, str pooltype)
  output : Tensor(x_grad)
H
hong 已提交
1438
  infer_meta :
1439 1440
    func : UnchangedInferMeta
    param : [x]
H
hong 已提交
1441
  kernel :
1442
    func : segment_pool_grad
1443 1444
    data_type : x
  optional : summed_ids
H
hong 已提交
1445

1446 1447 1448 1449
- backward_api : selu_grad
  forward : selu (Tensor x, float scale, float alpha) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, float scale, float alpha)
  output : Tensor(x_grad)
H
hong 已提交
1450
  infer_meta :
1451 1452
    func : UnchangedInferMeta
    param : [out]
H
hong 已提交
1453
  kernel :
1454
    func : selu_grad
H
hong 已提交
1455

1456 1457 1458 1459 1460 1461 1462 1463 1464
- backward_api : sigmoid_cross_entropy_with_logits_grad
  forward : sigmoid_cross_entropy_with_logits (Tensor x, Tensor label, bool normalize, int ignore_index) -> Tensor(out)
  args : (Tensor x, Tensor label, Tensor out_grad, bool normalize, int ignore_index)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : sigmoid_cross_entropy_with_logits_grad
H
hong 已提交
1465

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
- backward_api : sigmoid_double_grad
  forward : sigmoid_grad (Tensor out, Tensor fwd_grad_out) -> Tensor(grad_x)
  args : (Tensor out, Tensor fwd_grad_out, Tensor grad_x_grad)
  output : Tensor(out_grad), Tensor(fwd_grad_out_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [out, fwd_grad_out]
  kernel :
    func : sigmoid_double_grad
  backward : sigmoid_triple_grad

1477 1478 1479 1480 1481 1482 1483 1484 1485
- backward_api : sigmoid_grad
  forward : sigmoid (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : sigmoid_grad
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
  backward : sigmoid_double_grad

- backward_api : sigmoid_triple_grad
  forward : sigmoid_double_grad (Tensor out, Tensor fwd_grad_out, Tensor grad_grad_x) -> Tensor(grad_out), Tensor(grad_grad_out)
  args : (Tensor out, Tensor fwd_grad_out, Tensor grad_grad_x, Tensor grad_out_grad, Tensor grad_grad_out_grad)
  output : Tensor(out_grad), Tensor(fwd_grad_out_grad), Tensor(grad_grad_x_grad)
  infer_meta :
    func : GeneralTernaryGradInferMeta
    param : [out, fwd_grad_out, grad_grad_x]
  kernel :
1496
    func : sigmoid_triple_grad
H
hong 已提交
1497

1498 1499 1500
- backward_api : silu_grad
  forward : silu (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
H
hong 已提交
1501 1502 1503 1504 1505
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
1506
    func : silu_grad
H
hong 已提交
1507

1508 1509 1510 1511
- backward_api : sin_grad
  forward : sin (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
H
hong 已提交
1512
  infer_meta :
1513 1514
    func : UnchangedInferMeta
    param : [x]
H
hong 已提交
1515
  kernel :
1516
    func : sin_grad
H
hong 已提交
1517

1518 1519 1520 1521
- backward_api : sinh_grad
  forward : sinh (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
H
hong 已提交
1522
  infer_meta :
1523 1524
    func : UnchangedInferMeta
    param : [x]
H
hong 已提交
1525
  kernel :
1526
    func : sinh_grad
H
hong 已提交
1527

H
hong 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536
- backward_api : slice_grad
  forward : slice (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) -> Tensor(out)
  args : (Tensor input, Tensor out_grad, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis)
  output : Tensor(input_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [input]
  kernel :
    func : slice_grad
1537
  no_need_buffer : input
H
hong 已提交
1538

1539 1540 1541 1542
- backward_api : soft_shrink_grad
  forward : soft_shrink (Tensor x, float lambda) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float lambda)
  output : Tensor(x_grad)
H
hong 已提交
1543 1544
  infer_meta :
    func : UnchangedInferMeta
1545
    param : [x]
H
hong 已提交
1546
  kernel :
1547
    func : soft_shrink_grad
H
hong 已提交
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557
- backward_api : softmax_grad
  forward : softmax (Tensor x, int axis) -> Tensor(out)
  args : (Tensor out, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : softmax_grad
H
hong 已提交
1558

1559
- backward_api : split_grad
1560
  forward : split (Tensor x, IntArray num_or_sections, Scalar axis) -> Tensor[](out)
1561 1562 1563 1564
  args : (Tensor[] out_grad, Scalar axis)
  output : Tensor(x_grad)
  invoke : concat( out_grad, axis)
# TODO(zhangyunfei) The config of double grad and triple grad will be supported in the future.
H
hong 已提交
1565

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
- backward_api : sqrt_grad
  forward : sqrt (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out]
  kernel :
    func : sqrt_grad

- backward_api : square_grad
  forward : square (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : square_grad

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
- backward_api : squeeze_grad
  forward : squeeze(Tensor x, int[] axes) -> Tensor(xshape), Tensor(out)
  args : (Tensor xshape, Tensor out_grad, int[] axes)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param: [xshape]
  kernel :
    func : squeeze_grad

1596 1597 1598
- backward_api : stack_grad
  forward : stack (Tensor[] x, int axis) -> Tensor(out)
  args : (Tensor[] x, Tensor out_grad, int axis)
1599 1600 1601 1602 1603 1604 1605
  output : Tensor[](x_grad){x.size()}
  infer_meta :
    func : StackGradInferMeta
    param: [out_grad, axis]
  kernel :
    func : stack_grad
    param : [out_grad, axis]
1606 1607
  no_need_buffer : x

1608 1609 1610 1611 1612 1613 1614 1615 1616
- backward_api : strided_slice_grad
  forward : strided_slice (Tensor x, int[] axes, IntArray starts, IntArray ends, IntArray strides) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] axes, IntArray starts, IntArray ends, IntArray strides)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : strided_slice_grad
1617
  no_need_buffer : x
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627
- backward_api : subtract_grad
  forward : subtract (Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out_grad, int axis = -1)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : subtract_grad
H
hong 已提交
1628
  no_need_buffer : x, y
H
hong 已提交
1629

1630 1631 1632 1633 1634 1635 1636
- backward_api : sum_double_grad
  forward : sum_grad (Tensor x, Tensor grad_out, int64_t[] dims, bool keep_dim, bool reduce_all=false) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int64_t[] dims={}, bool keep_dim=false)
  output : Tensor(grad_out_grad)
  invoke : sum(grad_x_grad, dims, grad_x_grad.dtype(), keep_dim)
  backward : sum_triple_grad

F
From00 已提交
1637 1638 1639 1640 1641 1642 1643 1644 1645
- backward_api : sum_grad
  forward : sum (Tensor x, int64_t[] dims={}, DataType out_dtype=paddle::experimental::DataType::UNDEFINED, bool keep_dim=false) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int64_t[] dims, bool keep_dim, bool reduce_all=false)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : sum_grad
1646 1647 1648 1649 1650 1651 1652
  backward : sum_double_grad

- backward_api : sum_triple_grad
  forward : sum_double_grad (Tensor grad_grad_x, int64_t[] dims={}, bool keep_dim=false) -> Tensor(grad_grad_out)
  args : (Tensor grad_grad_x, Tensor grad_grad_out_grad, int64_t[] dims={}, bool keep_dim=false, bool reduce_all=false)
  output : Tensor(grad_grad_x_grad)
  invoke : sum_grad(grad_grad_x, grad_grad_out_grad, dims, keep_dim, reduce_all)
1653
  no_need_buffer : x
F
From00 已提交
1654

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
- backward_api : swish_grad
  forward : swish (Tensor x, float beta=1.0) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float bete=1.0)
  output : Tensor(x_grad)
  infer_meta :
    func : GeneralUnaryGradInferMeta
    param : [x]
  kernel :
    func : swish_grad

1665 1666 1667 1668 1669 1670 1671 1672 1673
- backward_api : take_along_axis_grad
  forward : take_along_axis (Tensor x, Tensor index, int axis) -> Tensor(out)
  args : (Tensor x, Tensor index, Tensor out_grad, int axis)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : take_along_axis_grad
H
hong 已提交
1674

1675 1676 1677
- backward_api : tan_grad
  forward : tan (Tensor x) -> Tensor(out)
  args : (Tensor x, Tensor out_grad)
H
hong 已提交
1678 1679 1680 1681 1682
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
1683
    func : tan_grad
H
hong 已提交
1684

1685 1686 1687 1688
- backward_api : tanh_grad
  forward : tanh (Tensor x) -> Tensor(out)
  args : (Tensor out, Tensor out_grad)
  output : Tensor(x_grad)
H
hong 已提交
1689
  infer_meta :
1690 1691
    func : UnchangedInferMeta
    param : [out]
H
hong 已提交
1692
  kernel :
1693
    func : tanh_grad
H
hong 已提交
1694

1695 1696
- backward_api : tanh_shrink_grad
  forward : tanh_shrink (Tensor x) -> Tensor(out)
Z
zhangbo9674 已提交
1697 1698 1699 1700 1701 1702
  args : (Tensor x, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
1703
    func : tanh_shrink_grad
H
hong 已提交
1704

1705 1706 1707 1708 1709 1710 1711 1712 1713
- backward_api : thresholded_relu_grad
  forward : thresholded_relu (Tensor x, float threshold) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, float threshold)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : thresholded_relu_grad
H
hong 已提交
1714

1715
- backward_api : tile_grad
1716 1717
  forward : tile (Tensor x, IntArray repeat_times) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, IntArray repeat_times)
1718 1719 1720 1721 1722 1723
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : tile_grad
H
hong 已提交
1724
  no_need_buffer : x
H
hong 已提交
1725

1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
- backward_api : top_k_grad
  forward : top_k (Tensor x, Scalar k, int axis = -1, bool largest = true, bool sorted = true) -> Tensor(out), Tensor(indices)
  args : (Tensor x, Tensor indices, Tensor out_grad, Scalar k = -1, int axis = -1, bool largest = true, bool sorted = true)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : top_k_grad

1736 1737 1738 1739 1740 1741 1742 1743 1744
- backward_api : trace_grad
  forward : trace (Tensor x, int offset, int axis1, int axis2) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int offset, int axis1, int axis2)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : trace_grad
H
hong 已提交
1745
  no_need_buffer : x
H
hong 已提交
1746

1747 1748 1749 1750 1751 1752
- backward_api : transpose_double_grad
  forward : transpose_grad (Tensor grad_out, int[] axis) -> Tensor(grad_x)
  args : (Tensor grad_x_grad, int[] axis)
  output : Tensor(grad_out_grad)
  invoke : transpose(grad_x_grad, axis)

1753 1754 1755 1756 1757 1758 1759 1760 1761
- backward_api : transpose_grad
  forward : transpose (Tensor x, int[] axis) -> Tensor(out)
  args : (Tensor out_grad, int[] axis)
  output : Tensor(x_grad)
  infer_meta :
    func : TransposeGradInferMeta
    param : [out_grad, axis]
  kernel :
    func : transpose_grad
1762
  backward : transpose_double_grad
H
hong 已提交
1763

1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
- backward_api : triangular_solve_grad
  forward : triangular_solve (Tensor x, Tensor y, bool upper, bool tranpose, bool unitriangular) -> Tensor(out)
  args : (Tensor x, Tensor y, Tensor out, Tensor out_grad, bool upper, bool tranpose, bool unitriangular)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : triangular_solve_grad

F
From00 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
- backward_api : tril_triu_grad
  forward : tril_triu(Tensor x,  int diagonal,  bool lower) -> Tensor(out)
  args : (Tensor out_grad,  int diagonal,  bool lower)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : tril_triu_grad

1784 1785 1786 1787 1788 1789 1790 1791 1792
- backward_api : trunc_grad
  forward : trunc (Tensor x) -> Tensor(out)
  args : (Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [out_grad]
  kernel :
    func : trunc_grad
H
hong 已提交
1793

1794 1795 1796 1797 1798 1799
- backward_api : unbind_grad
  forward : unbind (Tensor input, int axis) -> Tensor[](out)
  args : (Tensor[] out_grad, int axis)
  output : Tensor(input_grad)
  invoke : stack(out_grad, axis)

1800 1801 1802 1803 1804 1805 1806 1807 1808
- backward_api : unfold_grad
  forward : unfold (Tensor x, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) -> Tensor(out)
  args : (Tensor x, Tensor out_grad, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations)
  output : Tensor(x_grad)
  infer_meta :
    func : UnchangedInferMeta
    param : [x]
  kernel :
    func : unfold_grad
H
hong 已提交
1809
  no_need_buffer : x
H
hong 已提交
1810

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
- backward_api : unsqueeze_grad
  forward : unsqueeze(Tensor x, IntArray axes) -> Tensor(xshape), Tensor(out)
  args : (Tensor xshape, Tensor out_grad)
  output : Tensor(x_grad)
  infer_meta :
    func : KernelWithXShapeInferMeta
    param: [xshape]
  kernel :
    func : unsqueeze_grad

1821 1822 1823 1824 1825 1826 1827 1828 1829
- backward_api : where_grad
  forward : where (Tensor condition, Tensor x, Tensor y) -> Tensor(out)
  args : (Tensor condition, Tensor x, Tensor y, Tensor out_grad)
  output : Tensor(x_grad), Tensor(y_grad)
  infer_meta :
    func : GeneralBinaryGradInferMeta
    param : [x, y]
  kernel :
    func : where_grad
1830
  no_need_buffer : x, y