fft.py 70.7 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17
from typing import Sequence
import numpy as np
import paddle
18 19
from .tensor.attribute import is_complex, is_floating_point, is_integer
from .tensor.creation import _real_to_complex_dtype, _complex_to_real_dtype
F
Feiyu Chan 已提交
20
from .fluid.framework import _in_legacy_dygraph, in_dygraph_mode
21 22 23 24 25
from . import _C_ops
from .fluid.data_feeder import check_variable_and_dtype
from .fluid.layer_helper import LayerHelper

__all__ = [
Z
zhiboniu 已提交
26 27 28 29 30 31
    'fft',
    'ifft',
    'rfft',
    'irfft',
    'hfft',
    'ihfft',
32 33 34 35 36
    'fft2',
    'ifft2',
    'rfft2',
    'irfft2',
    'hfft2',
Z
zhiboniu 已提交
37
    'ihfft2',
38 39 40 41 42
    'fftn',
    'ifftn',
    'rfftn',
    'irfftn',
    'hfftn',
Z
zhiboniu 已提交
43 44 45 46
    'ihfftn',
    'fftfreq',
    'rfftfreq',
    'fftshift',
47
    'ifftshift',
Z
zhiboniu 已提交
48
]
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106


def _check_normalization(norm):
    if norm not in ['forward', 'backward', 'ortho']:
        raise ValueError(
            "Unexpected norm: {}. Norm should be forward, backward or ortho".
            format(norm))


def _check_fft_n(n):
    if not isinstance(n, int):
        raise ValueError(
            "Invalid FFT argument n({}), it shoule be an integer.".format(n))
    if n <= 0:
        raise ValueError(
            "Invalid FFT argument n({}), it should be positive.".format(n))


def _check_fft_shape(x, s):
    ndim = x.ndim
    if not isinstance(s, Sequence):
        raise ValueError(
            "Invaid FFT argument s({}), it should be a sequence of integers.")

    if len(s) > ndim:
        raise ValueError(
            "Length of FFT argument s should not be larger than the rank of input. "
            "Received s: {}, rank of x: {}".format(s, ndim))
    for size in s:
        if not isinstance(size, int) or size <= 0:
            raise ValueError("FFT sizes {} contains invalid value ({})".format(
                s, size))


def _check_fft_axis(x, axis):
    ndim = x.ndim
    if not isinstance(axis, int):
        raise ValueError(
            "Invalid FFT axis ({}), it shoule be an integer.".format(axis))
    if axis < -ndim or axis >= ndim:
        raise ValueError(
            "Invalid FFT axis ({}), it should be in range [-{}, {})".format(
                axis, ndim, ndim))


def _check_fft_axes(x, axes):
    ndim = x.ndim
    if not isinstance(axes, Sequence):
        raise ValueError(
            "Invalid FFT axes ({}), it should be a sequence of integers.".
            format(axes))
    if len(axes) > ndim:
        raise ValueError(
            "Length of fft axes should not be larger than the rank of input. "
            "Received, len of axes: {}, rank of x: {}".format(len(axes), ndim))
    for axis in axes:
        if not isinstance(axis, int) or axis < -ndim or axis >= ndim:
            raise ValueError(
107 108
                "FFT axes {} contains invalid value ({}), it should be in range [-{}, {})"
                .format(axes, axis, ndim, ndim))
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129


def _resize_fft_input(x, s, axes):
    if len(s) != len(axes):
        raise ValueError("length of `s` should equals length of `axes`.")
    shape = x.shape
    ndim = x.ndim

    axes_to_pad = []
    paddings = []
    axes_to_slice = []
    slices = []
    for i, axis in enumerate(axes):
        if shape[axis] < s[i]:
            axes_to_pad.append(axis)
            paddings.append(s[i] - shape[axis])
        elif shape[axis] > s[i]:
            axes_to_slice.append(axis)
            slices.append((0, s[i]))

    if axes_to_slice:
130 131 132 133
        x = paddle.slice(x,
                         axes_to_slice,
                         starts=[item[0] for item in slices],
                         ends=[item[1] for item in slices])
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    if axes_to_pad:
        padding_widths = [0] * (2 * ndim)
        for axis, pad in zip(axes_to_pad, paddings):
            padding_widths[2 * axis + 1] = pad
        x = paddle.nn.functional.pad(x, padding_widths)
    return x


def _normalize_axes(x, axes):
    ndim = x.ndim
    return [item if item >= 0 else (item + ndim) for item in axes]


def _check_at_least_ndim(x, rank):
    if x.ndim < rank:
        raise ValueError("The rank of the input ({}) should >= {}".format(
            x.ndim, rank))


# public APIs 1d
def fft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Calculate one-dimensional discrete Fourier transform.

    This function uses the efficient fast Fourier transform (FFT) algorithm [1] to 
    calculate the 1-D * n * point discrete Fourier transform (DFT).

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        n (int, optional): The length of the output transform axis. If `n` is less than 
            the length input, the input will be cropped. If larger, the input is filled 
            with zeros. If `n` is not given, the input length along the axis specified 
            by `axis` is used.
        axis (int, optional): Axis used to calculate FFT. If not specified, the last axis 
            is used by default.       
169
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies 
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are 
            scaled by ``1/sqrt(n)``.
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        complex tensor. The truncated or zero-padded input, transformed along the axis indicated 
        by `axis`, or the last one if `axis` is not specified.
    
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.exp(3j * np.pi * np.arange(7) / 7)
            xp = paddle.to_tensor(x)
            fft_xp = paddle.fft.fft(xp).numpy()
            print(fft_xp)
            #  [1.+1.25396034e+00j 1.+4.38128627e+00j 1.-4.38128627e+00j
            #   1.-1.25396034e+00j 1.-4.81574619e-01j 1.+8.88178420e-16j
            #   1.+4.81574619e-01j]


    """
199
    if is_integer(x) or is_floating_point(x):
200 201 202 203 204 205 206
        return fft_r2c(x,
                       n,
                       axis,
                       norm,
                       forward=True,
                       onesided=False,
                       name=name)
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
    else:
        return fft_c2c(x, n, axis, norm, forward=True, name=name)


def ifft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Compute the 1-D inverse discrete Fourier Transform.

    This function computes the inverse of the 1-D *n*-point discrete Fourier transform 
    computed by `fft`.  In other words, ``ifft(fft(x)) == x`` to within numerical accuracy.

    The input should be ordered in the same way as is returned by `fft`,
    i.e.,

    * ``x[0]`` should contain the zero frequency term,
    * ``x[1:n//2]`` should contain the positive-frequency terms,
    * ``x[n//2 + 1:]`` should contain the negative-frequency terms, in
      increasing order starting from the most negative frequency.

    For an even number of input points, ``x[n//2]`` represents the sum of
    the values at the positive and negative Nyquist frequencies, as the two
    are aliased together. 

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        n (int, optional): The length of the output transform axis. If `n` is less than 
            the length input, the input will be cropped. If larger, the input is filled 
            with zeros. If `n` is not given, the input length along the axis specified 
            by `axis` is used.
        axis (int, optional): Axis used to calculate FFT. If not specified, the last axis 
            is used by default.       
238
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies 
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are 
            scaled by ``1/sqrt(n)``.
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        complex tensor. The truncated or zero-padded input, transformed along the axis indicated 
        by `axis`, or the last one if `axis` is not specified.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.exp(3j * np.pi * np.arange(7) / 7)
            xp = paddle.to_tensor(x)
            ifft_xp = paddle.fft.ifft(xp).numpy()
            print(ifft_xp)
            #  [0.14285714+1.79137191e-01j 0.14285714+6.87963741e-02j
            #   0.14285714+1.26882631e-16j 0.14285714-6.87963741e-02j
            #   0.14285714-1.79137191e-01j 0.14285714-6.25898038e-01j
            #   0.14285714+6.25898038e-01j]

    """
268
    if is_integer(x) or is_floating_point(x):
269 270 271 272 273 274 275
        return fft_r2c(x,
                       n,
                       axis,
                       norm,
                       forward=False,
                       onesided=False,
                       name=name)
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    else:
        return fft_c2c(x, n, axis, norm, forward=False, name=name)


def rfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    The one dimensional FFT for real input.

    This function computes the one dimensional *n*-point discrete Fourier
    Transform (DFT) of a real-valued tensor by means of an efficient algorithm
    called the Fast Fourier Transform (FFT).

    When the DFT is computed for purely real input, the output is
    Hermitian-symmetric. This function does not compute the negative frequency 
    terms, and the length of the transformed axis of the output is therefore 
    ``n//2 + 1``.

    Args:
        x(Tensor) : Real-valued input tensor 
        n(int, optional): Number of points along transformation axis in the 
            input to use. If `n` is smaller than the length of the input, the 
            input is cropped. If it is larger, the input is padded with zeros. 
            If `n` is not given, the length of the input along the axis 
            specified by `axis` is used.
        axis(int, optional): Axis over which to compute the FFT. Default value 
            is last axis.
        norm(str, optional) : Normalization mode, indicates which direction of 
            the forward/backward  pair of transforms is scaled and with what 
            normalization factor. Include {"backward", "ortho", "forward"}, 
            default value is "backward".
306 307 308 309 310 311
            
                - "backward": The factor of forward direction and backward direction are ``1`` and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
                
            Where ``n`` is the multiplication of each element in  ``s`` .
312 313 314 315 316 317 318 319
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property. For more information, please 
            refer to :ref:`api_guide_Name` . 

    Returns:
        out(Tensor) : complex tensor

    Examples:
320
    
321
    .. code-block:: python
322
    
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
        import paddle

        x = paddle.to_tensor([0.0, 1.0, 0.0, 0.0])
        print(paddle.fft.rfft(x))
        # Tensor(shape=[3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [ (1+0j), -1j    , (-1+0j)])
    """
    return fft_r2c(x, n, axis, norm, forward=True, onesided=True, name=name)


def irfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Computes the inverse of `rfft`.

    This function calculates the inverse of the one-dimensional *n* point discrete 
    Fourier transform of the actual input calculated by "rfft". In other words, 
    ``irfft(rfft(a),len(a)) == a`` is within the numerical accuracy range.

    The input shall be in the form of "rfft", i.e. the actual zero frequency term, 
    followed by the complex positive frequency term, in the order of increasing frequency. 
    Because the discrete Fourier transform of the actual input is Hermite symmetric, 
    the negative frequency term is regarded as the complex conjugate term of the corresponding 
    positive frequency term.

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        n (int, optional): The length of the output transform axis. For `n` output
            points, ``n//2 + 1``input points are necessary. If the length of the input tensor is greater 
            than `n`, it will be cropped, if it is shorter than this, fill in zero. If `n` is not given, 
            it is considered to be ``2 * (k-1)``, where ``k`` is the length of the input axis specified 
            along the ` axis'.
        axis (int, optional): Axis used to calculate FFT. If not specified, the last axis 
            is used by default.       
356
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward".
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name` . 

    Returns:
        Real tensor. Truncated or zero fill input for the transformation along the axis indicated by 
        `axis`, or the last input if `axis` is not specified. The length of the conversion axis 
        is `n`, or ``2 * k-2``, if `k` is None, where `k` is the length of the input conversion axis. 
        If the output is an odd number, you need to specify the value of 'n', such as ``2 * k-1``
        in some cases.
    
    Examples:

        .. code-block:: python

            import paddle

375 376 377 378 379
            x = paddle.to_tensor([1, -1j, -1])
            irfft_x = paddle.fft.irfft(x)
            print(irfft_x)
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0., 1., 0., 0.])
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
    """
    return fft_c2r(x, n, axis, norm, forward=False, name=name)


def hfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    Compute the FFT of a signal that has Hermitian symmetry, a real
    spectrum.

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        n (int, optional): The length of the output transform axis. For `n` output
            points, ``n//2 + 1`` input points are necessary. If the length of the input tensor is greater 
            than `n`, it will be cropped, if it is shorter than this, fill in zero. If `n` is not given, 
            it is considered to be ``2 * (k-1)``, where ``k`` is the length of the input axis specified 
            along the ` axis'.
        axis (int,optional): Axis used to calculate FFT. If not specified, the last axis 
            is used by default.       
398
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward".
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name` . 

    Returns:
        Real tensor. Truncated or zero fill input for the transformation along the axis indicated by 
        `axis`, or the last input if `axis` is not specified. The length of the conversion axis 
        is `n`, or ``2 * k-2``, if `k` is None, where `k` is the length of the input conversion axis. 
        If the output is an odd number, you need to specify the value of 'n', such as ``2 * k-1`` in 
        some cases.
    
    Examples:

        .. code-block:: python

            import paddle

417 418 419 420 421
            x = paddle.to_tensor([1, -1j, -1])
            hfft_x = paddle.fft.hfft(x)
            print(hfft_x)
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0., 0., 0., 4.])
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
    """

    return fft_c2r(x, n, axis, norm, forward=True, name=name)


def ihfft(x, n=None, axis=-1, norm="backward", name=None):
    """
    The inverse FFT of a signal that has Hermitian symmetry.

    This function computes the one dimensional *n*-point inverse FFT of a signal 
    that has Hermitian symmetry by means of an efficient algorithm called 
    the Fast Fourier Transform (FFT).

    When the DFT is computed for purely real input, the output is
    Hermitian-symmetric. This function does not compute the negative frequency 
    terms, and the length of the transformed axis of the output is therefore 
    ``n//2 + 1``.

    Args:
        x(Tensor): Input tensor.
        n(int, optional): The number of points along transformation axis in the 
            input to use.  If `n` is smaller than the length of the input, the 
            input is cropped.  If it is larger, the input is padded with zeros. 
            If `n` is not given, the length of the input along the axis 
            specified by `axis` is used.
        axis(int, optional) : Axis over which to compute the inverse FFT. If not
            given, the last axis is used.
        norm(str, optional) : Normalization mode, indicates which direction of 
            the forward/backward pair of transforms is scaled and with what 
            normalization factor. Include {"backward", "ortho", "forward"}, 
            default value is "backward".
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property. For more information, please 
            refer to :ref:`api_guide_Name` . 

    Returns:
        out(Tensor) : complex tensor.

    Examples:
461
    
462
    .. code-block:: python
463
    
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
        import paddle 

        spectrum = paddle.to_tensor([10.0, -5.0, 0.0, -1.0, 0.0, -5.0])
        print(paddle.fft.ifft(spectrum))
        # Tensor(shape=[6], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #       [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j), (2.3333334922790527+1.9868215517249155e-08j),  (1+1.9868215517249155e-08j)])
        print(paddle.fft.ihfft(spectrum))
        #  Tensor(shape = [4], dtype = complex64, place = CUDAPlace(0), stop_gradient = True,
        #         [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j)])

    """
    return fft_r2c(x, n, axis, norm, forward=False, onesided=True, name=name)


# public APIs nd
def fftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Compute the N-D discrete Fourier Transform.

    This function calculates the n-D discrete Fourier transform on any number of axes 
    in the M-D array by fast Fourier transform (FFT).

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
            This corresponds to ``n`` for ``fft(x, n)``.
            Along any axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used.
        axes (sequence of ints, optional): Axes used to calculate FFT. If not given, the last ``len(s)``
            axes are used, or all axes if `s` is also not specified.      
497
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies 
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are 
            scaled by ``1/sqrt(n)``.
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        complex tensor. The truncated or zero-padded input, transformed along the axes indicated by 
        `axes`, or by a combination of `s` and `x`, as explained in the parameters section above.
    
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.mgrid[:4, :4, :4][1]
            xp = paddle.to_tensor(x)
            fftn_xp = paddle.fft.fftn(xp, axes=(1, 2)).numpy()
            print(fftn_xp)
            #  [[[24.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+8.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.-8.j  0.+0.j  0.+0.j  0.-0.j]]
            #   [[24.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+8.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.-8.j  0.+0.j  0.+0.j  0.-0.j]]
            #   [[24.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+8.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.-8.j  0.+0.j  0.+0.j  0.-0.j]]
            #   [[24.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+8.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.+0.j  0.+0.j  0.+0.j  0.-0.j]
            #   [-8.-8.j  0.+0.j  0.+0.j  0.-0.j]]]
    """
538
    if is_integer(x) or is_floating_point(x):
539 540 541 542 543 544 545
        return fftn_r2c(x,
                        s,
                        axes,
                        norm,
                        forward=True,
                        onesided=False,
                        name=name)
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    else:
        return fftn_c2c(x, s, axes, norm, forward=True, name=name)


def ifftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Compute the N-D inverse discrete Fourier Transform.

    This function computes the inverse of the N-D discrete
    Fourier Transform over any number of axes in an M-D array by
    means of the Fast Fourier Transform (FFT).  In other words,
    ``ifftn(fftn(x)) == x`` to within numerical accuracy.

    The input, analogously to `ifft`, should be ordered in the same way as is
    returned by `fftn`, i.e., it should have the term for zero frequency
    in all axes in the low-order corner, the positive frequency terms in the
    first half of all axes, the term for the Nyquist frequency in the middle
    of all axes and the negative frequency terms in the second half of all
    axes, in order of decreasingly negative frequency.

    Args:
        x (Tensor): The input data. It's a Tensor type. It's a complex.
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
            This corresponds to ``n`` for ``fft(x, n)``.
            Along any axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used.
        axes (sequence of ints, optional): Axes used to calculate FFT. If not given, the last ``len(s)``
            axes are used, or all axes if `s` is also not specified.      
577
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward", meaning no normalization on
            the forward transforms and scaling by ``1/n`` on the `ifft`. "forward" instead applies 
            the ``1/n`` factor on the forward tranform. For ``norm="ortho"``, both directions are 
            scaled by ``1/sqrt(n)``.
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.
        
    Returns:
        complex tensor. The truncated or zero-padded input, transformed along the axes indicated by 
        `axes`, or by a combination of `s` and `x`, as explained in the parameters section above.
    
    Examples:

        .. code-block:: python

            import paddle

596 597 598 599 600 601 602 603 604 605 606 607 608
            x = paddle.eye(3)
            ifftn_x = paddle.fft.ifftn(x, axes=(1,))
            print(ifftn_x)
            # Tensor(shape=[3, 3], dtype=complex64, place=Place(cpu), stop_gradient=True,
            #        [[ (0.3333333432674408+0j)                  ,
            #           (0.3333333432674408-0j)                  ,
            #           (0.3333333432674408+0j)                  ],
            #         [ (0.3333333432674408+0j)                  ,
            #          (-0.1666666716337204+0.28867512941360474j),
            #          (-0.1666666716337204-0.28867512941360474j)],
            #         [ (0.3333333432674408+0j)                  ,
            #          (-0.1666666716337204-0.28867512941360474j),
            #          (-0.1666666716337204+0.28867512941360474j)]])
609
    """
610
    if is_integer(x) or is_floating_point(x):
611 612 613 614 615 616 617
        return fftn_r2c(x,
                        s,
                        axes,
                        norm,
                        forward=False,
                        onesided=False,
                        name=name)
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
    else:
        return fftn_c2c(x, s, axes, norm, forward=False, name=name)


def rfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    The N dimensional FFT for real input.

    This function computes the N-dimensional discrete Fourier Transform over
    any number of axes in an M-dimensional real array by means of the Fast
    Fourier Transform (FFT).  By default, all axes are transformed, with the
    real transform performed over the last axis, while the remaining
    transforms are complex.

    The transform for real input is performed over the last transformation
    axis, as by `rfft`, then the transform over the remaining axes is
    performed as by `fftn`.  The order of the output is as for `rfft` for the
    final transformation axis, and as for `fftn` for the remaining
    transformation axes.

    Args:
        x(Tensor) : Input tensor, taken to be real.
640
        s(Sequence[int], optional) : Shape to use from the exec fft. The final element of 
641 642 643 644 645 646
            `s` corresponds to `n` for ``rfft(x, n)``, while for the remaining 
            axes, it corresponds to `n` for ``fft(x, n)``. Along any axis, if 
            the given shape is smaller than that of the input, the input is 
            cropped.  If it is larger, the input is padded with zeros. if `s` is 
            not given, the shape of the input along the axes specified by `axes` 
            is used.
647
        axes(Sequence[int], optional) : Axes over which to compute the FFT.  If not given, 
648 649 650 651 652
            the last ``len(s)`` axes are used, or all axes if `s` is also not 
            specified.
        norm(str, optional) : Normalization mode, indicates which direction of 
            the forward/backward pair of transforms is scaled and with what 
            normalization factor. Include {"backward", "ortho", "forward"}, 
653 654 655 656 657 658 659 660 661 662
            default value is "backward". The details of 
            three operations are shown below:
            
                - "backward": The factor of forward direction and backward direction are ``1`` 
                and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` 
                and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
                
            Where ``n`` is the multiplication of each element in  ``s`` .
663 664 665 666 667 668 669 670
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property. For more information, please 
            refer to :ref:`api_guide_Name` . 

    Returns:
        out(Tensor): complex tensor

    Examples:
671
    
672
    .. code-block:: python
673
    
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
        import paddle

        # default, all axis will be used to exec fft
        x = paddle.ones((2, 3, 4))
        print(paddle.fft.rfftn(x))
        # Tensor(shape=[2, 3, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [[[(24+0j), 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ]],
        #
        #         [[0j     , 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ]]])

        # use axes(2, 0)
        print(paddle.fft.rfftn(x, axes=(2, 0)))
        # Tensor(shape=[2, 3, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [[[(8+0j), 0j     , 0j     ],
        #          [(8+0j), 0j     , 0j     ],
        #          [(8+0j), 0j     , 0j     ]],
        #
        #         [[0j     , 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ],
        #          [0j     , 0j     , 0j     ]]])

    """
    return fftn_r2c(x, s, axes, norm, forward=True, onesided=True, name=name)


def irfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Computes the inverse of `rfftn`.

    This function computes the inverse of the N-D discrete
    Fourier Transform for real input over any number of axes in an
    M-D array by means of the Fast Fourier Transform (FFT). In
    other words, ``irfftn(rfftn(x), x.shape) == x`` to within numerical
711
    accuracy. (The ``x.shape`` is necessary like ``len(x)`` is for `irfft`,
712 713 714 715 716 717 718 719 720
    and for the same reason.)

    The input should be ordered in the same way as is returned by `rfftn`,
    i.e., as for `irfft` for the final transformation axis, and as for `ifftn`
    along all the other axes.

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): The length of the output transform axis. 
721 722 723 724 725 726 727 728
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). 
            
            - `s` is also the number of input points used along this axis, except for the last axis, where ``s[-1]//2+1`` points of the input are used. 
            - Along any axis, if the shape indicated by `s` is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. 
            - If `s` is not given, the shape of the input along the axes specified by axes is used. Except for the last axis which is taken to be ``2*(k-1)`` 
            
            where ``k`` is the length of the input along that axis.
            
729 730 731 732
        axes (sequence of ints, optional): Axes over which to compute the inverse FFT. If not given, the last
            `len(s)` axes are used, or all axes if `s` is also not specified.      
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
            pair and what normalization factor to use. The parameter value must be one 
733 734 735 736 737 738 739 740
            of "forward" or "backward" or "ortho". Default is "backward". The details of 
            three operations are shown below:
            
                - "backward": The factor of forward direction and backward direction are ``1`` and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
                
            Where ``n`` is the multiplication of each element in  ``s`` .
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`. 
    
    Returns:
        Real tensor. The truncated or zero-padded input, transformed along the axes indicated by `axes`, 
        or by a combination of `s` or `x`, as explained in the parameters section above. The length of 
        each transformed axis is as given by the corresponding element of `s`, or the length of the input
        in every axis except for the last one if `s` is not given. In the final transformed axis the length
        of the output when `s` is not given is ``2*(m-1)``, where ``m`` is the length of the final 
        transformed axis of the input. To get an odd number of output points in the final axis, 
        `s` must be specified.

    Examples:

        .. code-block:: python

            import paddle

759 760 761 762 763 764 765 766 767
            x = paddle.to_tensor([2.+2.j, 2.+2.j, 3.+3.j]).astype(paddle.complex128)
            print(x)
            irfftn_x = paddle.fft.irfftn(x)
            print(irfftn_x)
            
            # Tensor(shape=[3], dtype=complex128, place=Place(cpu), stop_gradient=True,
            #        [(2+2j), (2+2j), (3+3j)])
            # Tensor(shape=[4], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [ 2.25000000, -1.25000000,  0.25000000,  0.75000000])
768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
    
    """
    return fftn_c2r(x, s, axes, norm, forward=False, name=name)


def hfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    Compute the N-D FFT of Hermitian symmetric complex input, i.e., a
    signal with a real spectrum.

    This function calculates the n-D discrete Fourier transform of Hermite symmetric 
    complex input on any axis in M-D array by fast Fourier transform (FFT). 
    In other words, ``ihfftn(hfftn(x, s)) == x is within the numerical accuracy range. 
    (``s`` here are ``x.shape`` and ``s[-1] = x.shape[- 1] * 2 - 1``. This is necessary 
    for the same reason that ``irfft` requires ``x.shape``.)

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): The length of the output transform axis. 
            (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the
            number of input points used along this axis, except for the last axis,
            where ``s[-1]//2+1`` points of the input are used. Along any axis, if 
            the shape indicated by `s` is smaller than that of the input, the input 
            is cropped. If it is larger, the input is padded with zeros. 
            If `s` is not given, the shape of the input along the axes specified by axes 
            is used. Except for the last axis which is taken to be ``2*(k-1)`` where 
            ``k`` is the length of the input along that axis.
        axes (sequence of ints, optional): Axes over which to compute the inverse FFT. If not given, the last
            `len(s)` axes are used, or all axes if `s` is also not specified.      
797
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward".
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`. 
    
    Returns:
        Real tensor. Truncate or zero fill input, transforming along the axis indicated by axis or 
        a combination of `s` or `X`.
    
    Examples:

        .. code-block:: python

            import paddle

813 814 815 816 817
            x = paddle.to_tensor([(2+2j), (2+2j), (3+3j)])
            hfftn_x = paddle.fft.hfftn(x)
            print(hfftn_x)
            # Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [ 9.,  3.,  1., -5.])
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
    """
    return fftn_c2r(x, s, axes, norm, forward=True, name=name)


def ihfftn(x, s=None, axes=None, norm="backward", name=None):
    """
    The n dimensional inverse FFT of a signal that has Hermitian symmetry.

    This function computes the n dimensional inverse FFT over any number of axes 
    in an M-dimensional of a signal that has Hermitian symmetry by means of an 
    efficient algorithm called the Fast Fourier Transform (FFT).

    Args:
        x(Tensor): Input tensor.
        s(Sequence[int], optional) : Shape (length along each transformed axis) 
            to use from the input. (``s[0]`` refers to axis 0, ``s[1]`` to axis 
            1, etc.). Along any axis, if the given shape is smaller than that 
            of the input, the input is cropped. If it is larger, the input is 
            padded with zeros. if `s` is not given, the shape of the input 
            along the axes specified by `axes` is used.
838
        axes(Sequence[int], optional) : Axis over which to compute the inverse FFT. If not
839 840 841 842 843 844 845 846 847 848 849 850 851
            given, the last axis is used.
        norm(str, optional) : Normalization mode, indicates which direction of 
            the forward/backward pair of transforms is scaled and with what 
            normalization factor. Include {"backward", "ortho", "forward"}, 
            default value is "backward".
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property. For more information, please 
            refer to :ref:`api_guide_Name` . 

    Returns:
        out(Tensor) : complex tensor.

    Examples:
852
    
853
    .. code-block:: python
854
    
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
        import paddle 

        spectrum = paddle.to_tensor([10.0, -5.0, 0.0, -1.0, 0.0, -5.0])
        print(paddle.fft.ifft(spectrum))
        # Tensor(shape=[6], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #       [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j), (2.3333334922790527+1.9868215517249155e-08j),  (1+1.9868215517249155e-08j)])
        print(paddle.fft.ihfft(spectrum))
        #  Tensor(shape = [4], dtype = complex64, place = CUDAPlace(0), stop_gradient = True,
        #         [(-0.1666666716337204+0j),  (1-1.9868215517249155e-08j), (2.3333334922790527-1.9868215517249155e-08j),  (3.5+0j)])
    """
    return fftn_r2c(x, s, axes, norm, forward=False, onesided=True, name=name)


# public APIs 2d
def fft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the 2-D discrete Fourier Transform

    This function computes the N-D discrete Fourier Transform
    over any axes in an M-D array by means of the
    Fast Fourier Transform (FFT). By default, the transform is computed over
    the last two axes of the input array, i.e., a 2-dimensional FFT.

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output. 
            It should be a sequence of 2 integers. This corresponds to ``n`` for ``fft(x, n)``. 
            Along each axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used. Default is None.
        axes (sequence of ints, optional):  Axes over which to compute the FFT. It should be a 
            sequence of 2 integers. If not specified, the last two axes are used by default.       
888
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward".
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`. 
    
    Returns:
        Complex tensor. The truncated or zero-padded input, transformed along the axes indicated by `axes`, 
        or the last two axes if `axes` is not given.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.mgrid[:2, :2][1]
            xp = paddle.to_tensor(x)
            fft2_xp = paddle.fft.fft2(xp).numpy()
            print(fft2_xp)
            #  [[ 2.+0.j -2.+0.j]
            #   [ 0.+0.j  0.+0.j]]

    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
917 918
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers."
                .format(s))
919 920 921
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
922 923
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers."
                .format(axes))
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
    return fftn(x, s, axes, norm, name)


def ifft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the 2-D inverse discrete Fourier Transform.

    This function computes the inverse of the 2-D discrete Fourier
    Transform over any number of axes in an M-D array by means of
    the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(x)) == x``
    to within numerical accuracy. By default, the inverse transform is
    computed over the last two axes of the input array.

    The input, analogously to `ifft`, should be ordered in the same way as is
    returned by `fft2`, i.e., it should have the term for zero frequency
    in the low-order corner of the two axes, the positive frequency terms in
    the first half of these axes, the term for the Nyquist frequency in the
    middle of the axes and the negative frequency terms in the second half of
    both axes, in order of decreasingly negative frequency.

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): Shape (length of each transformed axis) of the output. 
            It should be a sequence of 2 integers. This corresponds to ``n`` for ``fft(x, n)``. 
            Along each axis, if the given shape is smaller than that of the input,
            the input is cropped. If it is larger, the input is padded with zeros.
            if `s` is not given, the shape of the input along the axes specified
            by `axes` is used. Default is None.
        axes (sequence of ints, optional):  Axes over which to compute the FFT. It should be a 
            sequence of 2 integers. If not specified, the last two axes are used by default.       
954
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward".
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Complex tensor. The truncated or zero-padded input, transformed along the axes indicated by `axes`, 
        or the last two axes if `axes` is not given.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.mgrid[:2, :2][1]
            xp = paddle.to_tensor(x)
            ifft2_xp = paddle.fft.ifft2(xp).numpy()
            print(ifft2_xp)
            #  [[ 0.5+0.j -0.5+0.j]
            #   [ 0. +0.j  0. +0.j]]
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
982 983
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers."
                .format(s))
984 985 986
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
987 988
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers."
                .format(axes))
989 990 991 992 993 994 995 996 997 998 999 1000
    return ifftn(x, s, axes, norm, name)


def rfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    The two dimensional FFT with real tensor input.

    This is really just `rfftn` with different default behavior.
    For more details see `rfftn`.

    Args:
        x(Tensor): Input tensor, taken to be real.
1001
        s(Sequence[int], optional) : Shape of the FFT.
1002 1003 1004 1005
        axes(Sequence[int], optional): Axes over which to compute the FFT.
        norm(str, optional) : {"backward", "ortho", "forward"}, 
            default is "backward". Indicates which direction of the 
            forward/backward pair of transforms is scaled and with what 
1006 1007 1008 1009 1010 1011 1012 1013
            normalization factor. The details of 
            three operations are shown below:
            
                - "backward": The factor of forward direction and backward direction are ``1`` and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
                
            Where ``n`` is the multiplication of each element in  ``s`` .
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property. For more information, please 
            refer to :ref:`api_guide_Name` . 

    Returns: 
        out(Tensor): The result of the real 2-D FFT.

    Examples:

    .. code-block:: python
1024
    
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
        import paddle
        import numpy as np

        x = paddle.to_tensor(np.mgrid[:5, :5][0].astype(np.float32))
        print(paddle.fft.rfft2(x))
        # Tensor(shape=[5, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
        #        [[ (50+0j)                                        ,  (1.1920928955078125e-07+0j)                    ,  0j                                             ],
        #         [(-12.5+17.204774856567383j)                     , (-9.644234211236835e-08+7.006946134424652e-08j) ,  0j                                             ],
        #         [(-12.500000953674316+4.061495304107666j)        , (3.6837697336977726e-08-1.1337477445749755e-07j),  0j                                             ],
        #         [(-12.500000953674316-4.061495304107666j)        , (3.6837697336977726e-08+1.1337477445749755e-07j),  0j                                             ],
        #         [(-12.5-17.204774856567383j)                     , (-9.644234211236835e-08-7.006946134424652e-08j) ,  0j                                             ]])
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
1041 1042
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers."
                .format(s))
1043 1044 1045
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1046 1047
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers."
                .format(axes))
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
    return rfftn(x, s, axes, norm, name)


def irfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Computes the inverse of `rfft2`.

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): Shape of the real output to the inverse FFT. Default is None.
        axes (sequence of ints, optional): The axes over which to compute the inverse FFT. Axes 
            must be two-dimensional. If not specified, the last two axes are used by default.       
1060
        norm (str, optional): Indicates which direction to scale the `forward` or `backward` transform
1061
            pair and what normalization factor to use. The parameter value must be one 
1062 1063 1064 1065 1066 1067 1068 1069
            of "forward" or "backward" or "ortho". Default is "backward". The details of 
            three operations are shown below:
            
                - "backward": The factor of forward direction and backward direction are ``1`` and ``1/n`` respectively;
                - "forward": The factor of forward direction and backward direction are ``1/n`` and ``1`` respectively;
                - "ortho": The factor of forward direction and backword direction are both ``1/sqrt(n)``.
                
            Where ``n`` is the multiplication of each element in  ``s`` .
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name` . 
    
    Returns:
        Real tensor. The result of the inverse real 2-D FFT.
    
    Examples:

        .. code-block:: python

            import paddle

1082 1083 1084 1085 1086 1087
            x = paddle.to_tensor([[3.+3.j, 2.+2.j, 3.+3.j], [2.+2.j, 2.+2.j, 3.+3.j]])
            irfft2_x = paddle.fft.irfft2(x)
            print(irfft2_x)
            # Tensor(shape=[2, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[ 2.37500000, -1.12500000,  0.37500000,  0.87500000],
            #         [ 0.12500000,  0.12500000,  0.12500000,  0.12500000]])
1088 1089 1090 1091 1092
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
1093 1094
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers."
                .format(s))
1095 1096 1097
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1098 1099
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers."
                .format(axes))
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    return irfftn(x, s, axes, norm, name)


def hfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the 2-D FFT of a Hermitian complex array.

    Args:
        x (Tensor): The input data. It's a Tensor type.
        s (sequence of ints, optional): Shape of the real output. Default is None.
        axes (sequence of ints, optional):  Axes over which to compute the FFT. Axes must be 
            two-dimensional. If not specified, the last two axes are used by default.       
        norm (str): Indicates which direction to scale the `forward` or `backward` transform
            pair and what normalization factor to use. The parameter value must be one 
            of "forward" or "backward" or "ortho". Default is "backward".
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`. 
    
    Returns:
        Real tensor. The real result of the 2-D Hermitian complex real FFT.
    
    Examples:

        .. code-block:: python

            import paddle

1127 1128 1129 1130 1131 1132
            x = paddle.to_tensor([[3.+3.j, 2.+2.j, 3.+3.j], [2.+2.j, 2.+2.j, 3.+3.j]])
            hfft2_x = paddle.fft.hfft2(x)
            print(hfft2_x)
            # Tensor(shape=[2, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[19.,  7.,  3., -9.],
            #         [ 1.,  1.,  1.,  1.]])
1133 1134 1135 1136 1137
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
1138 1139
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers."
                .format(s))
1140 1141 1142
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1143 1144
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers."
                .format(axes))
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    return hfftn(x, s, axes, norm, name)


def ihfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
    """
    Compute the two dimensional inverse FFT of a real spectrum.

    This is really `ihfftn` with different defaults.
    For more details see `ihfftn`.

    Args:
1156
        x(Tensor): Input tensor.
1157 1158 1159 1160
        s(Sequence[int], optional): Shape of the real input to the inverse FFT.
        axes(Sequance[int], optional): The axes over which to compute the 
            inverse fft. Default is the last two axes.
        norm(str, optional): {"backward", "ortho", "forward"}. Default is 
1161
            "backward".
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
        name(str, optional): The default value is None.  Normally there is no 
            need for user to set this property. For more information, please 
            refer to :ref:`api_guide_Name` . 

    Returns:
        out(Tensor) : The result of the inverse hermitian 2-D FFT.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.mgrid[:5, :5][0].astype(np.float64)
            xp = paddle.to_tensor(x)
            ihfft2_xp = paddle.fft.ihfft2(xp).numpy()
            print(ihfft2_xp)
            # [[ 2. +0.j          0. +0.j          0. +0.j        ]
            #  [-0.5-0.68819096j  0. +0.j          0. +0.j        ]
            #  [-0.5-0.16245985j  0. +0.j          0. +0.j        ]
            #  [-0.5+0.16245985j  0. +0.j          0. +0.j        ]
            #  [-0.5+0.68819096j  0. +0.j          0. +0.j        ]]
    """
    _check_at_least_ndim(x, 2)
    if s is not None:
        if not isinstance(s, Sequence) or len(s) != 2:
            raise ValueError(
1190 1191
                "Invalid FFT argument s ({}), it should be a sequence of 2 integers."
                .format(s))
1192 1193 1194
    if axes is not None:
        if not isinstance(axes, Sequence) or len(axes) != 2:
            raise ValueError(
1195 1196
                "Invalid FFT argument axes ({}), it should be a sequence of 2 integers."
                .format(axes))
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
    return ihfftn(x, s, axes, norm, name)


# public APIs utilities
def fftfreq(n, d=1.0, dtype=None, name=None):
    """
    Return the Discrete Fourier Transform sample frequencies.

    The returned float array `f` contains the frequency bin centers in cycles
    per unit of the sample spacing (with zero at the start).  For instance, if
    the sample spacing is in seconds, then the frequency unit is cycles/second.

    Given input length `n` and a sample spacing `d`::

      f = [0, 1, ...,   n/2-1,     -n/2, ..., -1] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n)   if n is odd

    Args:
        n (int): Dimension inputed.
        d (scalar, optional): Sample spacing (inverse of the sampling rate). Defaults is 1.
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. A tensor of length 'n' containing the sampling frequency.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.array([3, 1, 2, 2, 3], dtype=float)
            scalar_temp = 0.5
            n = x.size
            fftfreq_xp = paddle.fft.fftfreq(n, d=scalar_temp)
            print(fftfreq_xp)

            #  Tensor(shape=[5], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #           [ 0.        ,  0.40000001,  0.80000001, -0.80000001, -0.40000001])
    """

    dtype = paddle.framework.get_default_dtype()
    val = 1.0 / (n * d)
    pos_max = (n + 1) // 2
    neg_max = n // 2
    indices = paddle.arange(-neg_max, pos_max, dtype=dtype, name=name)
    indices = paddle.roll(indices, -neg_max, name=name)
    return indices * val


def rfftfreq(n, d=1.0, dtype=None, name=None):
    """
    Return the Discrete Fourier Transform sample frequencies.

    The returned floating-point array "F" contains the center of the frequency unit, 
    and the unit is the number of cycles of the sampling interval (the starting point is zero). 

    Given input length `n` and a sample spacing `d`::

      f = [0, 1, ...,     n/2-1,     n/2] / (d*n)   if n is even
      f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n)   if n is odd

    the Nyquist frequency component is considered to be positive.

    Args:
        n (int): Dimension inputed.
        d (scalar, optional): Sample spacing (inverse of the sampling rate). Defaults is 1.
1266 1267
        dtype (str, optional): The data type of returns. Defaults is the data type of returns 
            of ``paddle.get_default_dtype()``.
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. A tensor of length ``n//2 + 1`` containing the sample frequencies.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.array([3, 1, 2, 2, 3], dtype=float)
            scalar_temp = 0.3
            n = x.size
            rfftfreq_xp = paddle.fft.rfftfreq(n, d=scalar_temp)
            print(rfftfreq_xp)

            #  Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #           [0.        , 0.66666669, 1.33333337])

    """

    dtype = paddle.framework.get_default_dtype()
    val = 1.0 / (n * d)
    pos_max = 1 + n // 2
    indices = paddle.arange(0, pos_max, dtype=dtype, name=name)
    return indices * val


def fftshift(x, axes=None, name=None):
    """
    Shift the zero-frequency component to the center of the spectrum.

    This function swaps half spaces for all the axes listed (all by default).
    Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.

    Args:
        n (int): Dimension inputed.
        axes (int|tuple, optional): The axis on which to move. The default is none, which moves all axes.
            Default is None.
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. The shifted tensor.
    
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.array([3, 1, 2, 2, 3], dtype=float)
            n = x.size
            fftfreq_xp = paddle.fft.fftfreq(n, d=0.3)
            res = paddle.fft.fftshift(fftfreq_xp).numpy()
            print(res)
            #  [-1.3333334 -0.6666667  0.         0.6666667  1.3333334]

    """
    shape = paddle.shape(x)
    if axes is None:
        # shift all axes
1334 1335 1336
        rank = len(x.shape)
        axes = list(range(0, rank))
        shifts = shape // 2
1337 1338 1339
    elif isinstance(axes, int):
        shifts = shape[axes] // 2
    else:
1340
        shifts = paddle.concat([shape[ax] // 2 for ax in axes])
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
    return paddle.roll(x, shifts, axes, name=name)


def ifftshift(x, axes=None, name=None):
    """
    The inverse of `fftshift`. Although the even length 'x' is the same, the function of the 
    odd length 'x' is different. An example.

    Args:
        n (int): Dimension inputed.
        axes (int|tuple, optional): The axis on which to move. The default is none, which moves all axes.
            Default is None.
        name (str, optional): The default value is None.  Normally there is no need for user to set 
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor. The shifted tensor.
    
    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = np.array([3, 1, 2, 2, 3], dtype=float)
            n = x.size
            fftfreq_xp = paddle.fft.fftfreq(n, d=0.3)
            res = paddle.fft.ifftshift(fftfreq_xp).numpy()
            print(res)
            #  [ 1.3333334 -1.3333334 -0.6666667  0.         0.6666667]

    """
    shape = paddle.shape(x)
    if axes is None:
        # shift all axes
1377 1378
        rank = len(x.shape)
        axes = list(range(0, rank))
1379
        shifts = -shape // 2
1380 1381 1382
    elif isinstance(axes, int):
        shifts = -shape[axes] // 2
    else:
1383
        shifts = paddle.concat([-shape[ax] // 2 for ax in axes])
1384 1385 1386 1387 1388
    return paddle.roll(x, shifts, axes, name=name)


# internal functions
def fft_c2c(x, n, axis, norm, forward, name):
1389
    if is_integer(x):
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)

    axis = axis if axis is not None else -1
    _check_fft_axis(x, axis)
    axes = [axis]
    axes = _normalize_axes(x, axes)
    if n is not None:
        _check_fft_n(n)
        s = [n]
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_c2c'

    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)
F
Feiyu Chan 已提交
1406 1407 1408
    if in_dygraph_mode():
        out = _C_ops.final_state_fft_c2c(x, axes, norm, forward)
    elif _in_legacy_dygraph():
1409 1410 1411
        attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
        out = getattr(_C_ops, op_type)(x, *attrs)
    else:
1412 1413 1414
        inputs = {
            'X': [x],
        }
1415 1416 1417 1418 1419
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Out": [out]}
1420 1421 1422 1423
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
1424 1425 1426 1427
    return out


def fft_r2c(x, n, axis, norm, forward, onesided, name):
1428
    if is_integer(x):
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
        x = paddle.cast(x, paddle.get_default_dtype())
    _check_normalization(norm)
    axis = axis if axis is not None else -1
    _check_fft_axis(x, axis)
    axes = [axis]
    axes = _normalize_axes(x, axes)
    if n is not None:
        _check_fft_n(n)
        s = [n]
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_r2c'
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], op_type)

F
Feiyu Chan 已提交
1442 1443 1444
    if in_dygraph_mode():
        out = _C_ops.final_state_fft_r2c(x, axes, norm, forward, onesided)
    elif _in_legacy_dygraph():
1445 1446 1447 1448
        attrs = ('axes', axes, 'normalization', norm, 'forward', forward,
                 'onesided', onesided)
        out = getattr(_C_ops, op_type)(x, *attrs)
    else:
1449 1450 1451
        inputs = {
            'X': [x],
        }
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
        attrs = {
            'axes': axes,
            'normalization': norm,
            'forward': forward,
            'onesided': onesided,
        }
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
            _real_to_complex_dtype(dtype))
        outputs = {"Out": [out]}
1463 1464 1465 1466
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
1467 1468 1469 1470
    return out


def fft_c2r(x, n, axis, norm, forward, name):
1471
    if is_integer(x):
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)
    axis = axis if axis is not None else -1
    _check_fft_axis(x, axis)
    axes = [axis]
    axes = _normalize_axes(x, axes)
    if n is not None:
        _check_fft_n(n)
        s = [n // 2 + 1]
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_c2r'
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)

F
Feiyu Chan 已提交
1487 1488 1489 1490 1491 1492
    if in_dygraph_mode():
        if n is not None:
            out = _C_ops.final_state_fft_c2r(x, axes, norm, forward, n)
        else:
            out = _C_ops.final_state_fft_c2r(x, axes, norm, forward, 0)
    elif _in_legacy_dygraph():
1493 1494 1495 1496 1497 1498 1499
        if n is not None:
            attrs = ('axes', axes, 'normalization', norm, 'forward', forward,
                     'last_dim_size', n)
        else:
            attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
        out = getattr(_C_ops, op_type)(x, *attrs)
    else:
1500 1501 1502
        inputs = {
            'X': [x],
        }
1503 1504 1505 1506 1507 1508 1509 1510
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        if n is not None:
            attrs['last_dim_size'] = n
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
            _complex_to_real_dtype(dtype))
        outputs = {"Out": [out]}
1511 1512 1513 1514
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
1515 1516 1517 1518
    return out


def fftn_c2c(x, s, axes, norm, forward, name):
1519
    if is_integer(x):
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)
    if s is not None:
        _check_fft_shape(x, s)

    rank = x.ndim
    if axes is None:
        if s is None:
            axes = list(range(rank))
        else:
            fft_ndims = len(s)
            axes = list(range(rank - fft_ndims, rank))
    else:
        _check_fft_axes(x, axes)
        axes = _normalize_axes(x, axes)
        axes_argsoft = np.argsort(axes).tolist()
        axes = [axes[i] for i in axes_argsoft]
        if s is not None:
            if len(s) != len(axes):
                raise ValueError(
                    "Length of s ({}) and length of axes ({}) does not match.".
                    format(len(s), len(axes)))
            s = [s[i] for i in axes_argsoft]

    if s is not None:
        x = _resize_fft_input(x, s, axes)
    op_type = 'fft_c2c'
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)

F
Feiyu Chan 已提交
1551 1552 1553
    if in_dygraph_mode():
        out = _C_ops.final_state_fft_c2c(x, axes, norm, forward)
    elif _in_legacy_dygraph():
1554 1555 1556
        attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
        out = getattr(_C_ops, op_type)(x, *attrs)
    else:
1557 1558 1559
        inputs = {
            'X': [x],
        }
1560 1561 1562 1563 1564
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Out": [out]}
1565 1566 1567 1568
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
1569 1570 1571 1572
    return out


def fftn_r2c(x, s, axes, norm, forward, onesided, name):
1573
    if is_integer(x):
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
        x = paddle.cast(x, paddle.get_default_dtype())
    _check_normalization(norm)
    if s is not None:
        _check_fft_shape(x, s)

    rank = x.ndim
    if axes is None:
        if s is None:
            axes = list(range(rank))
        else:
            fft_ndims = len(s)
            axes = list(range(rank - fft_ndims, rank))
    else:
        _check_fft_axes(x, axes)
        axes = _normalize_axes(x, axes)
        axes_argsoft = np.argsort(axes[:-1]).tolist()
        axes = [axes[i] for i in axes_argsoft] + [axes[-1]]
        if s is not None:
            if len(s) != len(axes):
                raise ValueError(
                    "Length of s ({}) and length of axes ({}) does not match.".
                    format(len(s), len(axes)))
            s = [s[i] for i in axes_argsoft] + [s[-1]]

    if s is not None:
        x = _resize_fft_input(x, s, axes)

    op_type = 'fft_r2c'
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], op_type)

F
Feiyu Chan 已提交
1604 1605 1606
    if in_dygraph_mode():
        out = _C_ops.final_state_fft_r2c(x, axes, norm, forward, onesided)
    elif _in_legacy_dygraph():
1607 1608 1609 1610
        attrs = ('axes', axes, 'normalization', norm, 'forward', forward,
                 'onesided', onesided)
        out = getattr(_C_ops, op_type)(x, *attrs)
    else:
1611 1612 1613
        inputs = {
            'X': [x],
        }
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
        attrs = {
            'axes': axes,
            'normalization': norm,
            'forward': forward,
            'onesided': onesided,
        }
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
            _real_to_complex_dtype(dtype))
        outputs = {"Out": [out]}
1625 1626 1627 1628
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
1629 1630 1631 1632 1633

    return out


def fftn_c2r(x, s, axes, norm, forward, name):
1634
    if is_integer(x):
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
        x = paddle.cast(x, _real_to_complex_dtype(paddle.get_default_dtype()))
    elif is_floating_point(x):
        x = paddle.cast(x, _real_to_complex_dtype(x.dtype))
    _check_normalization(norm)
    if s is not None:
        _check_fft_shape(x, s)

    rank = x.ndim
    if axes is None:
        if s is None:
            axes = list(range(rank))
        else:
            fft_ndims = len(s)
            axes = list(range(rank - fft_ndims, rank))
    else:
        _check_fft_axes(x, axes)
        axes = _normalize_axes(x, axes)
        axes_argsoft = np.argsort(axes[:-1]).tolist()
        axes = [axes[i] for i in axes_argsoft] + [axes[-1]]
        if s is not None:
            if len(s) != len(axes):
                raise ValueError(
                    "Length of s ({}) and length of axes ({}) does not match.".
                    format(len(s), len(axes)))
            s = [s[i] for i in axes_argsoft] + [s[-1]]

    if s is not None:
        fft_input_shape = list(s)
        fft_input_shape[-1] = fft_input_shape[-1] // 2 + 1
        x = _resize_fft_input(x, fft_input_shape, axes)

    op_type = 'fft_c2r'
    check_variable_and_dtype(x, 'x', ['complex64', 'complex128'], op_type)

F
Feiyu Chan 已提交
1669 1670 1671 1672 1673 1674
    if in_dygraph_mode():
        if s is not None:
            out = _C_ops.final_state_fft_c2r(x, axes, norm, forward, s[-1])
        else:
            out = _C_ops.final_state_fft_c2r(x, axes, norm, forward, 0)
    elif _in_legacy_dygraph():
1675 1676 1677 1678 1679 1680 1681
        if s:
            attrs = ('axes', axes, 'normalization', norm, 'forward', forward,
                     'last_dim_size', s[-1])
        else:
            attrs = ('axes', axes, 'normalization', norm, 'forward', forward)
        out = getattr(_C_ops, op_type)(x, *attrs)
    else:
1682 1683 1684
        inputs = {
            'X': [x],
        }
1685 1686 1687 1688 1689 1690 1691 1692
        attrs = {'axes': axes, 'normalization': norm, 'forward': forward}
        if s:
            attrs["last_dim_size"] = s[-1]
        helper = LayerHelper(op_type, **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(
            _complex_to_real_dtype(dtype))
        outputs = {"Out": [out]}
1693 1694 1695 1696
        helper.append_op(type=op_type,
                         inputs=inputs,
                         outputs=outputs,
                         attrs=attrs)
1697
    return out