index_en.html 31.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Image Classification Tutorial &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../../genindex.html"/>
        <link rel="search" title="Search" href="../../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../../index.html"/>
        <link rel="up" title="TUTORIALS" href="../index_en.html"/>
        <link rel="next" title="Sentiment Analysis Tutorial" href="../sentiment_analysis/index_en.html"/>
        <link rel="prev" title="Regression MovieLens Ratting" href="../rec/ml_regression_en.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Folk me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a>Home</a></li>
          <li><a>Get Started</a></li>
          <li class="active"><a>Documentation</a></li>
          <li><a>About Us</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="../index_en.html">TUTORIALS</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../about/index_en.html">ABOUT</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/ubuntu_install_en.html">Debian Package installation guide</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../getstarted/basic_usage/index_en.html">Simple Linear Regression</a></li>
</ul>
</li>
<li class="toctree-l1 current"><a class="reference internal" href="../index_en.html">TUTORIALS</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="../quick_start/index_en.html">Quick Start</a></li>
<li class="toctree-l2"><a class="reference internal" href="../rec/ml_regression_en.html">MovieLens Regression</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Image Classification</a></li>
<li class="toctree-l2"><a class="reference internal" href="../sentiment_analysis/index_en.html">Sentiment Analysis</a></li>
<li class="toctree-l2"><a class="reference internal" href="../semantic_role_labeling/index_en.html">Semantic Role Labeling</a></li>
<li class="toctree-l2"><a class="reference internal" href="../text_generation/index_en.html">Text Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../gan/index_en.html">Image Auto-Generation</a></li>
<li class="toctree-l2"><a class="reference internal" href="../imagenet_model/resnet_model_en.html">ImageNet: ResNet</a></li>
<li class="toctree-l2"><a class="reference internal" href="../embedding_model/index_en.html">Embedding: Chinese Word</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/cluster/cluster_train_en.html">Run Distributed Training</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/new_layer_en.html">Write New Layers</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../api/index_en.html">API</a><ul>
158 159 160 161 162 163 164 165 166 167 168
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/data.html">Datasets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../api/v2/run_logic.html">Training and Inference</a></li>
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../about/index_en.html">ABOUT</a></li>
</ul>

        
    </nav>
    
    <nav class="local-toc"><ul>
<li><a class="reference internal" href="#">Image Classification Tutorial</a><ul>
<li><a class="reference internal" href="#data-preparation">Data Preparation</a></li>
<li><a class="reference internal" href="#preprocess">Preprocess</a></li>
<li><a class="reference internal" href="#model-training">Model Training</a></li>
<li><a class="reference internal" href="#prediction">Prediction</a></li>
<li><a class="reference internal" href="#exercise">Exercise</a></li>
<li><a class="reference internal" href="#delve-into-details">Delve into Details</a><ul>
<li><a class="reference internal" href="#convolutional-neural-network">Convolutional Neural Network</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="../index_en.html">TUTORIALS</a> > </li>
      
    <li>Image Classification Tutorial</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="image-classification-tutorial">
<span id="image-classification-tutorial"></span><h1>Image Classification Tutorial<a class="headerlink" href="#image-classification-tutorial" title="Permalink to this headline"></a></h1>
<p>This tutorial will guide you through training a convolutional neural network to classify objects using the CIFAR-10 image classification dataset.
As shown in the following figure, the convolutional neural network can recognize the main object in images, and output the classification result.</p>
<p><center><img alt="Image Classification" src="../../_images/image_classification.png" /></center></p>
<div class="section" id="data-preparation">
<span id="data-preparation"></span><h2>Data Preparation<a class="headerlink" href="#data-preparation" title="Permalink to this headline"></a></h2>
<p>First, download CIFAR-10 dataset. CIFAR-10 dataset can be downloaded from its official website.</p>
<p><a class="reference external" href="https://www.cs.toronto.edu/~kriz/cifar.html">https://www.cs.toronto.edu/~kriz/cifar.html</a></p>
<p>We have prepared a script to download and process CIFAR-10 dataset. The script will download CIFAR-10 dataset from the official dataset.
It will convert it to jpeg images and organize them into a directory with the required structure for the tutorial. Make sure that you have installed pillow and its dependents.
Consider the following commands:</p>
<ol class="simple">
<li>install pillow dependents</li>
</ol>
<div class="highlight-bash"><div class="highlight"><pre><span></span>sudo apt-get install libjpeg-dev
pip install pillow
</pre></div>
</div>
<ol class="simple">
<li>download data and preparation</li>
</ol>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nb">cd</span> demo/image_classification/data/
sh download_cifar.sh
</pre></div>
</div>
<p>The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.</p>
<p>Here are the classes in the dataset, as well as 10 random images from each:
<center><img alt="Image Classification" src="../../_images/cifar.png" /></center></p>
<p>After downloading and converting, we should find a directory (cifar-out) containing the dataset in the following format:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">train</span>
<span class="o">---</span><span class="n">airplane</span>
<span class="o">---</span><span class="n">automobile</span>
<span class="o">---</span><span class="n">bird</span>
<span class="o">---</span><span class="n">cat</span>
<span class="o">---</span><span class="n">deer</span>
<span class="o">---</span><span class="n">dog</span>
<span class="o">---</span><span class="n">frog</span>
<span class="o">---</span><span class="n">horse</span>
<span class="o">---</span><span class="n">ship</span>
<span class="o">---</span><span class="n">truck</span>
<span class="n">test</span>
<span class="o">---</span><span class="n">airplane</span>
<span class="o">---</span><span class="n">automobile</span>
<span class="o">---</span><span class="n">bird</span>
<span class="o">---</span><span class="n">cat</span>
<span class="o">---</span><span class="n">deer</span>
<span class="o">---</span><span class="n">dog</span>
<span class="o">---</span><span class="n">frog</span>
<span class="o">---</span><span class="n">horse</span>
<span class="o">---</span><span class="n">ship</span>
<span class="o">---</span><span class="n">truck</span>
</pre></div>
</div>
<p>It has two directories:<code class="docutils literal"><span class="pre">train</span></code> and <code class="docutils literal"><span class="pre">test</span></code>. These two directories contain training data and testing data of CIFAR-10, respectively. Each of these two folders contains 10 sub-folders, ranging from <code class="docutils literal"><span class="pre">airplane</span></code> to <code class="docutils literal"><span class="pre">truck</span></code>. Each sub-folder contains images with the corresponding label. After the images are organized into this structure, we are ready to train an image classification model.</p>
</div>
<div class="section" id="preprocess">
<span id="preprocess"></span><h2>Preprocess<a class="headerlink" href="#preprocess" title="Permalink to this headline"></a></h2>
<p>After the data has been downloaded, it needs to be pre-processed into the Paddle format. We can run the following command for preprocessing.</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">cd</span> <span class="n">demo</span><span class="o">/</span><span class="n">image_classification</span><span class="o">/</span>
<span class="n">sh</span> <span class="n">preprocess</span><span class="o">.</span><span class="n">sh</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">preprocess.sh</span></code> calls <code class="docutils literal"><span class="pre">./demo/image_classification/preprocess.py</span></code> to preprocess image data.</p>
<div class="highlight-sh"><div class="highlight"><pre><span></span><span class="nb">export</span> <span class="nv">PYTHONPATH</span><span class="o">=</span><span class="nv">$PYTHONPATH</span>:../../
<span class="nv">data_dir</span><span class="o">=</span>./data/cifar-out
python preprocess.py -i <span class="nv">$data_dir</span> -s <span class="m">32</span> -c <span class="m">1</span>
</pre></div>
</div>
<p><code class="docutils literal"><span class="pre">./demo/image_classification/preprocess.py</span></code> has the following arguments</p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">-i</span></code> or <code class="docutils literal"><span class="pre">--input</span></code> specifes  the input data directory.</li>
<li><code class="docutils literal"><span class="pre">-s</span></code> or <code class="docutils literal"><span class="pre">--size</span></code> specifies the processed size of images.</li>
<li><code class="docutils literal"><span class="pre">-c</span></code> or <code class="docutils literal"><span class="pre">--color</span></code> specifes whether images are color images or gray images.</li>
</ul>
</div>
<div class="section" id="model-training">
<span id="model-training"></span><h2>Model Training<a class="headerlink" href="#model-training" title="Permalink to this headline"></a></h2>
<p>We need to create a model config file before training the model. An example of the config file (vgg_16_cifar.py) is listed below. <strong>Note</strong>, it is slightly different from the <code class="docutils literal"><span class="pre">vgg_16_cifar.py</span></code> which also applies to the prediction.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">paddle.trainer_config_helpers</span> <span class="kn">import</span> <span class="o">*</span>
<span class="n">data_dir</span><span class="o">=</span><span class="s1">&#39;data/cifar-out/batches/&#39;</span>
<span class="n">meta_path</span><span class="o">=</span><span class="n">data_dir</span><span class="o">+</span><span class="s1">&#39;batches.meta&#39;</span>
<span class="n">args</span> <span class="o">=</span> <span class="p">{</span><span class="s1">&#39;meta&#39;</span><span class="p">:</span><span class="n">meta_path</span><span class="p">,</span> <span class="s1">&#39;mean_img_size&#39;</span><span class="p">:</span> <span class="mi">32</span><span class="p">,</span>
        <span class="s1">&#39;img_size&#39;</span><span class="p">:</span> <span class="mi">32</span><span class="p">,</span> <span class="s1">&#39;num_classes&#39;</span><span class="p">:</span> <span class="mi">10</span><span class="p">,</span>
        <span class="s1">&#39;use_jpeg&#39;</span><span class="p">:</span> <span class="mi">1</span><span class="p">,</span> <span class="s1">&#39;color&#39;</span><span class="p">:</span> <span class="s2">&quot;color&quot;</span><span class="p">}</span>
<span class="n">define_py_data_sources2</span><span class="p">(</span><span class="n">train_list</span><span class="o">=</span><span class="n">data_dir</span><span class="o">+</span><span class="s2">&quot;train.list&quot;</span><span class="p">,</span>
                        <span class="n">test_list</span><span class="o">=</span><span class="n">data_dir</span><span class="o">+</span><span class="s1">&#39;test.list&#39;</span><span class="p">,</span>
                        <span class="n">module</span><span class="o">=</span><span class="s1">&#39;image_provider&#39;</span><span class="p">,</span>
                        <span class="n">obj</span><span class="o">=</span><span class="s1">&#39;processData&#39;</span><span class="p">,</span>
                        <span class="n">args</span><span class="o">=</span><span class="n">args</span><span class="p">)</span>
<span class="n">settings</span><span class="p">(</span>
    <span class="n">batch_size</span> <span class="o">=</span> <span class="mi">128</span><span class="p">,</span>
    <span class="n">learning_rate</span> <span class="o">=</span> <span class="mf">0.1</span> <span class="o">/</span> <span class="mf">128.0</span><span class="p">,</span>
    <span class="n">learning_method</span> <span class="o">=</span> <span class="n">MomentumOptimizer</span><span class="p">(</span><span class="mf">0.9</span><span class="p">),</span>
    <span class="n">regularization</span> <span class="o">=</span> <span class="n">L2Regularization</span><span class="p">(</span><span class="mf">0.0005</span> <span class="o">*</span> <span class="mi">128</span><span class="p">))</span>

<span class="n">img</span> <span class="o">=</span> <span class="n">data_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;image&#39;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">3</span><span class="o">*</span><span class="mi">32</span><span class="o">*</span><span class="mi">32</span><span class="p">)</span>
<span class="n">lbl</span> <span class="o">=</span> <span class="n">data_layer</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;label&quot;</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
<span class="c1"># small_vgg is predined in trainer_config_helpers.network</span>
<span class="n">predict</span> <span class="o">=</span> <span class="n">small_vgg</span><span class="p">(</span><span class="n">input_image</span><span class="o">=</span><span class="n">img</span><span class="p">,</span> <span class="n">num_channels</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="n">outputs</span><span class="p">(</span><span class="n">classification_cost</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">predict</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">lbl</span><span class="p">))</span>
</pre></div>
</div>
<p>The first line imports python functions for defining networks.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">paddle.trainer_config_helpers</span> <span class="kn">import</span> <span class="o">*</span>
</pre></div>
</div>
<p>Then define an <code class="docutils literal"><span class="pre">define_py_data_sources2</span></code> which use python data provider
interface. The arguments in <code class="docutils literal"><span class="pre">args</span></code> are used in <code class="docutils literal"><span class="pre">image_provider.py</span></code> which
yeilds image data and transform them to Paddle.</p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">meta</span></code>: the mean value of training set.</li>
<li><code class="docutils literal"><span class="pre">mean_img_size</span></code>: the size of mean feature map.</li>
<li><code class="docutils literal"><span class="pre">img_size</span></code>: the height and width of input image.</li>
<li><code class="docutils literal"><span class="pre">num_classes</span></code>: the number of classes.</li>
<li><code class="docutils literal"><span class="pre">use_jpeg</span></code>: the data storage type when preprocessing.</li>
<li><code class="docutils literal"><span class="pre">color</span></code>: specify color image.</li>
</ul>
<p><code class="docutils literal"><span class="pre">settings</span></code> specifies the training algorithm. In the following example,
it specifies learning rate as 0.1, but divided by batch size, and the weight decay
is 0.0005 and multiplied by batch size.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">settings</span><span class="p">(</span>
    <span class="n">batch_size</span> <span class="o">=</span> <span class="mi">128</span><span class="p">,</span>
    <span class="n">learning_rate</span> <span class="o">=</span> <span class="mf">0.1</span> <span class="o">/</span> <span class="mf">128.0</span><span class="p">,</span>
    <span class="n">learning_method</span> <span class="o">=</span> <span class="n">MomentumOptimizer</span><span class="p">(</span><span class="mf">0.9</span><span class="p">),</span>
    <span class="n">regularization</span> <span class="o">=</span> <span class="n">L2Regularization</span><span class="p">(</span><span class="mf">0.0005</span> <span class="o">*</span> <span class="mi">128</span><span class="p">)</span>
<span class="p">)</span>
</pre></div>
</div>
<p>The <code class="docutils literal"><span class="pre">small_vgg</span></code> specifies the network. We use a small version of VGG convolutional network as our network
for classification. A description of VGG network can be found here <a class="reference external" href="http://www.robots.ox.ac.uk/~vgg/research/very_deep/">http://www.robots.ox.ac.uk/~vgg/research/very_deep/</a>.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># small_vgg is predined in trainer_config_helpers.network</span>
<span class="n">predict</span> <span class="o">=</span> <span class="n">small_vgg</span><span class="p">(</span><span class="n">input_image</span><span class="o">=</span><span class="n">img</span><span class="p">,</span> <span class="n">num_channels</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
</pre></div>
</div>
<p>After writing the config, we can train the model by running the script train.sh.</p>
<div class="highlight-bash"><div class="highlight"><pre><span></span><span class="nv">config</span><span class="o">=</span>vgg_16_cifar.py
<span class="nv">output</span><span class="o">=</span>./cifar_vgg_model
<span class="nv">log</span><span class="o">=</span>train.log

paddle train <span class="se">\</span>
--config<span class="o">=</span><span class="nv">$config</span> <span class="se">\</span>
--dot_period<span class="o">=</span><span class="m">10</span> <span class="se">\</span>
--log_period<span class="o">=</span><span class="m">100</span> <span class="se">\</span>
--test_all_data_in_one_period<span class="o">=</span><span class="m">1</span> <span class="se">\</span>
--use_gpu<span class="o">=</span><span class="m">1</span> <span class="se">\</span>
--save_dir<span class="o">=</span><span class="nv">$output</span> <span class="se">\</span>
<span class="m">2</span>&gt;<span class="p">&amp;</span><span class="m">1</span> <span class="p">|</span> tee <span class="nv">$log</span>

python -m paddle.utils.plotcurve -i <span class="nv">$log</span> &gt; plot.png
</pre></div>
</div>
<ul class="simple">
<li>Here we use GPU mode to train. If you have no gpu environment, just set <code class="docutils literal"><span class="pre">use_gpu=0</span></code>.</li>
<li><code class="docutils literal"><span class="pre">./demo/image_classification/vgg_16_cifar.py</span></code> is the network and data configuration file. The meaning of the other flags can be found in the documentation of the command line flags.</li>
<li>The script <code class="docutils literal"><span class="pre">plotcurve.py</span></code> requires the python module of <code class="docutils literal"><span class="pre">matplotlib</span></code>, so if it fails, maybe you need to install <code class="docutils literal"><span class="pre">matplotlib</span></code>.</li>
</ul>
<p>After training finishes, the training and testing error curves will be saved to <code class="docutils literal"><span class="pre">plot.png</span></code> using <code class="docutils literal"><span class="pre">plotcurve.py</span></code> script. An example of the plot is shown below:</p>
<p><center><img alt="Training and testing curves." src="../../_images/plot.png" /></center></p>
</div>
<div class="section" id="prediction">
<span id="prediction"></span><h2>Prediction<a class="headerlink" href="#prediction" title="Permalink to this headline"></a></h2>
<p>After we train the model, the model file as well as the model parameters are stored in path <code class="docutils literal"><span class="pre">./cifar_vgg_model/pass-%05d</span></code>. For example, the model of the 300-th pass is stored at <code class="docutils literal"><span class="pre">./cifar_vgg_model/pass-00299</span></code>.</p>
<p>To make a prediction for an image, one can run <code class="docutils literal"><span class="pre">predict.sh</span></code> as follows. The script will output the label of the classfiication.</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">sh</span> <span class="n">predict</span><span class="o">.</span><span class="n">sh</span>
</pre></div>
</div>
<p>predict.sh:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span>model=cifar_vgg_model/pass-00299/
image=data/cifar-out/test/airplane/seaplane_s_000978.png
use_gpu=1
python prediction.py $model $image $use_gpu
</pre></div>
</div>
</div>
<div class="section" id="exercise">
<span id="exercise"></span><h2>Exercise<a class="headerlink" href="#exercise" title="Permalink to this headline"></a></h2>
<p>Train a image classification of birds using VGG model and CUB-200 dataset. The birds dataset can be downloaded here. It contains an image dataset with photos of 200 bird species (mostly North American).</p>
<p><a class="reference external" href="http://www.vision.caltech.edu/visipedia/CUB-200.html">http://www.vision.caltech.edu/visipedia/CUB-200.html</a></p>
</div>
<div class="section" id="delve-into-details">
<span id="delve-into-details"></span><h2>Delve into Details<a class="headerlink" href="#delve-into-details" title="Permalink to this headline"></a></h2>
<div class="section" id="convolutional-neural-network">
<span id="convolutional-neural-network"></span><h3>Convolutional Neural Network<a class="headerlink" href="#convolutional-neural-network" title="Permalink to this headline"></a></h3>
<p>A Convolutional Neural Network is a feedforward neural network that uses convolution layers. It is very suitable for building neural networks that process and understand images. A standard convolutional neural network is shown below:</p>
<p><img alt="Convolutional Neural Network" src="../../_images/lenet.png" /></p>
<p>Convolutional Neural Network contains the following layers:</p>
<ul class="simple">
<li>Convolutional layer: It uses convolution operation to extract features from an image or a feature map.</li>
<li>Pooling layer: It uses max-pooling to downsample feature maps.</li>
<li>Fully Connected layer: It uses fully connected connections to transform features.</li>
</ul>
<p>Convolutional Neural Network achieves amazing performance for image classification because it exploits two important characteristics of images: <em>local correlation</em> and <em>spatial invariance</em>. By iteratively applying convolution and max-pooing operations, convolutional neural network can well represent these two characteristics of images.</p>
<p>For more details of how to define layers and their connections, please refer to the documentation of layers.</p>
</div>
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="../sentiment_analysis/index_en.html" class="btn btn-neutral float-right" title="Sentiment Analysis Tutorial" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
        <a href="../rec/ml_regression_en.html" class="btn btn-neutral" title="Regression MovieLens Ratting" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true
        };
    </script>
      <script type="text/javascript" src="../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>