kernel_dispatch.h 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <limits>
#include <string>
#include <utility>

21 22 23 24 25 26 27
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/api/lib/backend_set.h"
#include "paddle/phi/api/lib/data_type_set.h"
#include "paddle/phi/backends/all_context.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/selected_rows.h"
28 29
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
30

Y
YuanRisheng 已提交
31
// TODO(chenweihang): split Key, Kernel, Factory into diff files
32
#include "paddle/phi/core/kernel_factory.h"
33 34 35 36 37

namespace paddle {
namespace experimental {

namespace detail {
38
BackendSet GetTensorBackendSet(const phi::TensorBase& t);
39
std::size_t CountLeadingZeros(uint64_t val);
40 41
}  // namespace detail

42
phi::DeviceContext* GetDeviceContextByBackend(phi::Backend backend);
43

44
enum class KernelType {
45 46 47 48
  DENSE_TENSOR_KENREL,   // kernel for DenseTensor
  SELECTED_ROWS_KENREL,  // kernel for SelectedRows
  SPARSE_COO_KERNEL,     // kernel for SparseCooTensor
  SPARSE_CSR_KERNEL      // kernel for SparseCsrTensor
49 50
};

51 52 53 54 55 56 57
// TODO(chenweihang): support DataLayout and DataType selected
struct KernelKeySet {
  BackendSet backend_set{Backend::UNDEFINED};
  DataLayout layout{DataLayout::UNDEFINED};
  DataType dtype{DataType::UNDEFINED};

  // TODO(chenweihang): iterate all kernelkey for kernel selection
58
  phi::KernelKey GetHighestPriorityKernelKey() {
59 60 61 62
    return phi::KernelKey(static_cast<Backend>(64 - detail::CountLeadingZeros(
                                                        backend_set.bitset())),
                          layout,
                          dtype);
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  }
};

namespace detail {

template <typename Functor>
struct ArgsIterator {
  template <typename... Args>
  inline Functor& apply() {
    return self();
  }

  template <typename T, typename... Args>
  inline Functor& apply(T&& arg, Args&&... args) {
    self()(std::forward<T>(arg));
    if (self().short_circuit()) {
      return self();
    } else {
      return apply(std::forward<Args>(args)...);
    }
  }

  constexpr bool short_circuit() const { return false; }

 private:
  inline Functor& self() { return *static_cast<Functor*>(this); }
};

struct KernelKeyParser : ArgsIterator<KernelKeyParser> {
  KernelKeySet key_set;
93 94 95
  // this dtype_set is used for cache multi-inputs dtype and used for
  // data_promote
  DataTypeSet dtype_set{DataType::UNDEFINED};
96 97 98 99

  // TODO(chenweihang): deal with multiple diff input Tensors
  // TODO(chenweihang): add global device guard method to set backend
  void operator()(const Tensor& x) {
100 101 102 103 104 105 106
    const phi::TensorBase& tensor = *x.impl();
    key_set.backend_set =
        key_set.backend_set | detail::GetTensorBackendSet(tensor);
    // TODO(chenweihang): select multi layout and dtype
    key_set.layout = tensor.layout();
    key_set.dtype = tensor.dtype();
    dtype_set = dtype_set | DataTypeSet(key_set.dtype);
107 108 109 110
    auto promote_result = PromoteTypes(dtype_set);
    if (promote_result != DataType::UNDEFINED) {
      key_set.dtype = promote_result;
    }
111 112
  }

113
  void operator()(const std::vector<Tensor>& x) {
114
    const phi::TensorBase& tensor = *x.at(0).impl();
115
    key_set.backend_set =
116 117 118 119
        key_set.backend_set | detail::GetTensorBackendSet(tensor);
    // TODO(chenweihang): select multi layout and dtype
    key_set.layout = tensor.layout();
    key_set.dtype = tensor.dtype();
120 121
  }

122 123 124 125 126 127 128
  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

129 130 131 132 133 134
struct KernelTypeParser : ArgsIterator<KernelTypeParser> {
  KernelType kernel_type{KernelType::DENSE_TENSOR_KENREL};

  // TODO(chenweihang): deal with multiple diff input Tensors
  // TODO(chenweihang): add global device guard method to set backend
  void operator()(const Tensor& x) {
135
    if (phi::SelectedRows::classof(x.impl().get())) {
136
      kernel_type = KernelType::SELECTED_ROWS_KENREL;
137 138 139 140
    } else if (phi::SparseCooTensor::classof(x.impl().get())) {
      kernel_type = KernelType::SPARSE_COO_KERNEL;
    } else if (phi::SparseCsrTensor::classof(x.impl().get())) {
      kernel_type = KernelType::SPARSE_CSR_KERNEL;
141 142 143 144 145 146 147 148 149 150
    }
  }

  // skip other type args, these args don't used in kernel selection
  template <typename T>
  void operator()(const T& x) {
    // do nothing
  }
};

151 152 153 154 155 156 157
}  // namespace detail

template <typename... Args>
KernelKeySet ParseKernelKeyByInputArgs(const Args&... args) {
  return detail::KernelKeyParser().apply(args...).key_set;
}

158 159 160 161 162
template <typename... Args>
KernelType ParseKernelTypeByInputArgs(const Args&... args) {
  return detail::KernelTypeParser().apply(args...).kernel_type;
}

163 164 165 166 167
DataType ParseDataType(DataType dtype);
DataType ParseDataType(const Tensor& tensor);
DataType ParseDataType(const std::vector<Tensor>& tensors);
DataType ParseDataTypeWithInputOrder(DataType dtype, const Tensor& tensor);

168
Backend ParseBackend(const Place& place);
169 170 171 172 173 174 175 176
Backend ParseBackend(const Tensor& tensor);
template <typename T, typename... Args>
Backend ParseBackend(T t, Args... args) {
  auto backend_set =
      BackendSet(ParseBackend(t)) | BackendSet(ParseBackend(args...));
  return static_cast<Backend>(64 -
                              detail::CountLeadingZeros(backend_set.bitset()));
}
177
Backend ParseBackendWithInputOrder(const Place& place, const Tensor& tensor);
178 179 180 181 182

DataLayout ParseLayout(DataLayout layout);
DataLayout ParseLayout(const Tensor& tensor);
DataLayout ParseLayoutWithInputOrder(DataLayout layout, const Tensor& tensor);

183 184
}  // namespace experimental
}  // namespace paddle