reshape_op.cc 31.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include <string>
W
wanghuancoder 已提交
16

Y
yuyang18 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/framework/pten_utils.h"
Y
Yi Wang 已提交
19

20 21
// only can include the headers in paddle/pten/api dirs
#include "paddle/pten/api/lib/utils/tensor_utils.h"
W
Wilber 已提交
22
#include "paddle/pten/backends/cpu/cpu_context.h"
23
#include "paddle/pten/common/scalar_array.h"
24
#include "paddle/pten/kernels/reshape_grad_kernel.h"
25
#include "paddle/pten/kernels/reshape_kernel.h"
W
wanghuancoder 已提交
26 27 28 29 30 31 32 33 34 35
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
}  // namespace paddle

Y
Yibing Liu 已提交
36 37 38
namespace paddle {
namespace operators {

39 40
using Tensor = framework::Tensor;

Y
yuyang18 已提交
41 42 43 44 45 46 47 48
class ReshapeOp : public framework::OperatorWithKernel {
 public:
  ReshapeOp(const std::string &type, const framework::VariableNameMap &inputs,
            const framework::VariableNameMap &outputs,
            const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
49
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
50 51
                      platform::errors::InvalidArgument(
                          "Input(X) of ReshapeOp should not be null."));
52
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
53 54
                      platform::errors::InvalidArgument(
                          "Output(Out) of ReshapeOp should not be null."));
Y
yuyang18 已提交
55

56 57
    if (ctx->HasInputs("ShapeTensor")) {
      // top prority shape
58
      auto ShapeTensor = ctx->Inputs("ShapeTensor");
59 60
      PADDLE_ENFORCE_GT(
          ShapeTensor.size(), 0,
61 62 63 64 65
          platform::errors::InvalidArgument(
              "When `shape` in ReshapeOp is a list or tuple "
              "which contains Tensor, the shape's size can't be zero. "
              "But received shape's size is %d.",
              ShapeTensor.size()));
66 67 68 69 70 71 72
      auto infer_shape = ctx->Attrs().Get<std::vector<int>>("shape");
      const int64_t copy_dim_val = 0;
      auto in_dims = ctx->GetInputDim("X");
      for (size_t i = 0; i < infer_shape.size(); ++i) {
        if (infer_shape[i] == copy_dim_val) {
          PADDLE_ENFORCE_LT(
              static_cast<int>(i), in_dims.size(),
73 74 75 76 77
              platform::errors::InvalidArgument(
                  "The index of 0 in `shape` must be less than "
                  "the input tensor X's dimensions. But received shape[%d] "
                  "= 0, X's dimensions = %d, X's shape = [%s].",
                  i, in_dims.size(), in_dims));
78 79 80 81 82 83 84
          infer_shape[i] = in_dims[i];
        }
      }
      auto infer_out_dims = framework::make_ddim(infer_shape);
      ctx->SetOutputDim("Out", infer_out_dims);
      return;
    }
Y
yuyang18 已提交
85

86 87 88 89 90 91 92 93 94 95 96
    const std::vector<int> &shape = ctx->Attrs().Get<std::vector<int>>("shape");
    if (ctx->HasInput("Shape") && shape.empty()) {
      auto shape_dims = ctx->GetInputDim("Shape");
      int num_ele = 1;
      for (int i = 0; i < shape_dims.size(); ++i) {
        num_ele *= shape_dims[i];
      }
      auto vec_dims = std::vector<int>(num_ele, -1);
      auto out_dims = framework::make_ddim(vec_dims);
      ctx->SetOutputDim("Out", out_dims);
      ctx->ShareLoD("X", /*->*/ "Out");
97 98
      return;
    }
99 100

    if (ctx->HasInput("Shape") && !shape.empty() && ctx->IsRuntime()) {
Y
yuyang18 已提交
101 102 103 104 105
      // If true, set the shape of Output(Out) according to Input(Shape) in
      // ReshapeKernel with ExecutionContext. Also check LoD in ReshapeKernel.
      ctx->ShareLoD("X", /*->*/ "Out");
      return;
    }
106

107 108 109 110
    PADDLE_ENFORCE_EQ(!shape.empty(), true,
                      platform::errors::InvalidArgument(
                          "The parameter 'shape' in ReshapeOp must be set. "
                          "But received 'shape' is empty."));
Y
yuyang18 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123
    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ValidateShape(shape, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", /*->*/ "Out");
    }
  }

  static framework::DDim ValidateShape(const std::vector<int> shape,
                                       const framework::DDim &in_dims) {
    const int64_t in_size = framework::product(in_dims);
C
chengduo 已提交
124 125 126
    auto in_dims_vec = framework::vectorize(in_dims);
    bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
                                    [](int64_t i) { return i > 0; });
Y
yuyang18 已提交
127 128 129 130 131 132 133 134 135 136
    // only one dimension can be set to -1, whose size will be automatically
    // infered.
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
137 138
        PADDLE_ENFORCE_EQ(
            unk_dim_idx, -1,
139 140 141 142
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
                framework::make_ddim(shape), i));
Y
yuyang18 已提交
143 144
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
145 146
        PADDLE_ENFORCE_LT(
            static_cast<int>(i), in_dims.size(),
147 148 149 150 151 152
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
                framework::make_ddim(shape), i, in_dims, in_dims.size()));
Y
yuyang18 已提交
153
      } else {
154 155
        PADDLE_ENFORCE_GT(
            shape[i], 0,
156 157
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
T
tianshuo78520a 已提交
158
                "be negative except one unknown dimension. "
159 160
                "But received  shape = [%s], shape[%d] = %d.",
                framework::make_ddim(shape), i, shape[i]));
Y
yuyang18 已提交
161 162
      }

163 164
      // NOTE all non-zero values will be converted to True (include negative
      // value)
Y
yuyang18 已提交
165 166 167 168 169 170
      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
C
chengduo 已提交
171
      if (all_positive) {
Y
yuyang18 已提交
172 173 174 175 176
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
177 178 179 180 181 182 183
        PADDLE_ENFORCE_EQ(
            output_shape[unk_dim_idx] * capacity, -in_size,
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
184
                "'shape' is [%s], known capacity of 'shape' is %d.",
185
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
yuyang18 已提交
186 187 188 189
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
Y
Yamei-Lee 已提交
190 191 192
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
            capacity, in_size,
193 194 195 196 197 198 199
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
                in_dims, in_size, framework::make_ddim(shape), capacity));
Y
Yamei-Lee 已提交
200
      }
Y
yuyang18 已提交
201
    }
202 203 204 205 206

    // support reshape with zero-input(input tensor with product(shape) == 0)
    // by now we require that if the input tensor is zero shape, the target
    // shape of output must be zero
    if (in_size == 0) {
J
JZ-LIANG 已提交
207
      PADDLE_ENFORCE_LE(
208 209 210 211 212 213 214 215 216
          capacity, in_size,
          platform::errors::InvalidArgument(
              "The 'shape' in ReshapeOp is invalid. "
              "The input tensor X's shape = [%s], X's capacity = %d."
              "But the target shape of Out is [%s],  the "
              "capacity of 'Out' is %d.",
              in_dims, in_size, framework::make_ddim(shape), capacity));
    }

Y
yuyang18 已提交
217 218 219 220 221 222
    return framework::make_ddim(output_shape);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
223 224 225 226
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
Y
yuyang18 已提交
227
  }
228 229 230 231 232 233 234 235 236 237

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
Y
yuyang18 已提交
238 239
};

Y
Yibing Liu 已提交
240 241
class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
242
  void Make() override {
243 244
    AddInput("X", "(Tensor). The input tensor of reshape operator.");
    AddInput("Shape",
245 246 247
             "(Tensor<int32>, optional). Target shape of reshape operator. "
             "It has a higher priority than Attr(shape) but a lower priority "
             "than Input(ShapeTensor). The Attr(shape) still should be "
T
tianshuo78520a 已提交
248
             "set correctly to guarantee shape inference in compile time.")
249
        .AsDispensable();
250 251
    AddInput(
        "ShapeTensor",
252 253 254 255
        "(vector<Tensor<int32>>, optional). Target shape of reshape operator. "
        "It has the highest priority compare with Input(Shape) and "
        "Attr(shape)."
        "The shape of the element in vector must be [1].")
256 257
        .AsDuplicable()
        .AsDispensable();
258
    AddOutput("Out", "(Tensor). The output tensor of reshape operator.");
C
caoying03 已提交
259
    AddAttr<std::vector<int>>(
260 261 262 263
        "shape",
        "(std::vector<int>) Target shape of reshape operator."
        "It has the lowest priority compare with Input(Shape) and "
        " Input(ShapeTensor).")
264
        .SetDefault({});
265 266
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
Z
zmx 已提交
267 268
        .SetDefault(false)
        .AsExtra();
K
kexinzhao 已提交
269 270
    AddComment(R"DOC(
Reshape Operator.
Y
Yibing Liu 已提交
271

272 273
Reshape Input(X) into the shape specified by Attr(shape) or Input(Shape). The
data in Input(X) are unchanged.
Y
Yibing Liu 已提交
274

C
caoying03 已提交
275
Examples:
Y
Yibing Liu 已提交
276

C
caoying03 已提交
277 278 279 280
1. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
specified by Attr(shape) is [6, 8], the reshape operator will transform Input(X)
into a 2-D tensor with shape [6, 8] and leaving Input(X)'s data unchanged.

281
2. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
282 283 284 285 286 287
specified by Attr(shape) is [2, 3, -1, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 3, 4, 2] and leaving Input(X)'s data
unchanged. In this case, one and only dimension of Attr(shape) can be set to -1,
the value of this dimension is inferred from the total element number of
Input(X) and remaining dimensions.

288
3. Given a 3-D tensor Input(X) with a shape [2, 4, 6], and the target shape
C
caoying03 已提交
289 290 291 292
specified by Attr(shape) is [-1, 0, 3, 2], the reshape operator will transform
Input(X) into a 4-D tensor with shape [2, 4, 3, 2] and leaving Input(X)'s data
unchanged. In this case, besides -1, 0 means the actual dimension value is going
to be copied from the corresponding dimension of Input(X).
Y
Yibing Liu 已提交
293

C
caoying03 已提交
294
Note:
Y
Yibing Liu 已提交
295

C
caoying03 已提交
296 297 298
1. One and only one dimension in Attr(shape) can be set -1. In this case,
the actual dimension value will be infered from the total element number of
Input(X) and remaining dimensions.
299 300

2. More than one dimensions in Attr(shape) can be set to 0, which means the real
C
caoying03 已提交
301
dimension value will be copied from Input(X) at runtime. Note that the index of
G
guosheng 已提交
302
0 can not exceed Rank(X). For example, Input(X) is a 3-D tensor with shape
C
caoying03 已提交
303
[2, 3, 4], Attr(shape) = [2, 3, 2, 0] is an invalid input.
304 305

3. Input(Shape) has a higher priority than Attr(shape) if it is provided, while
T
tianshuo78520a 已提交
306
Attr(shape) still should be set correctly to guarantee shape inference in
307
compile-time.
Y
Yibing Liu 已提交
308

Y
Yibing Liu 已提交
309 310 311 312 313 314 315 316 317 318 319 320
)DOC");
  }
};

class ReshapeGradOp : public framework::OperatorWithKernel {
 public:
  ReshapeGradOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

321
  void InferShape(framework::InferShapeContext *ctx) const override {
322 323 324
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("X"), true,
        platform::errors::InvalidArgument("Input(X) shouldn't be null."));
325
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
326 327
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
Q
Qiao Longfei 已提交
328
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
Y
Yibing Liu 已提交
329
  }
330 331 332 333

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
334 335 336 337
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
338
  }
Y
Yibing Liu 已提交
339 340
};

Y
yuyang18 已提交
341 342 343 344 345
class ReshapeKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *out = ctx.Output<framework::LoDTensor>("Out");
    auto *in = ctx.Input<framework::LoDTensor>("X");
Y
yuyang18 已提交
346

347 348
    auto list_new_shape_tensor =
        ctx.MultiInput<framework::Tensor>("ShapeTensor");
349 350 351
    auto *shape_tensor = ctx.HasInput("Shape")
                             ? ctx.Input<framework::LoDTensor>("Shape")
                             : nullptr;
352
    pten::ScalarArray pt_scalar_shape;
353 354
    if (list_new_shape_tensor.size() > 0) {
      // have shape tensor
355 356 357 358 359
      std::vector<pten::DenseTensor> pt_vec_shape;
      for (auto &tensor : list_new_shape_tensor) {
        if (platform::is_gpu_place(tensor->place()) ||
            platform::is_xpu_place(tensor->place())) {
          framework::Tensor temp;
360 361
          paddle::framework::TensorCopySync(*tensor, platform::CPUPlace(),
                                            &temp);
362
          pt_vec_shape.push_back(std::move(temp));
363
        } else {
364
          pt_vec_shape.push_back(*tensor);
365 366
        }
      }
367
      pt_scalar_shape = pten::ScalarArray(pt_vec_shape);
368
    } else if (shape_tensor) {
369
      pten::DenseTensor pt_shape;
370 371 372
      if (platform::is_gpu_place(shape_tensor->place()) ||
          platform::is_xpu_place(shape_tensor->place())) {
        framework::Tensor temp;
373 374
        paddle::framework::TensorCopySync(*shape_tensor, platform::CPUPlace(),
                                          &temp);
375
        pt_shape = std::move(temp);
376
      } else {
377
        pt_shape = *shape_tensor;
378
      }
379
      pt_scalar_shape = pten::ScalarArray(pt_shape);
380
    } else {
381
      auto &shape_attr = ctx.Attr<std::vector<int>>("shape");
382 383 384 385
      pt_scalar_shape = pten::ScalarArray(shape_attr);
    }
    if (platform::is_cpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
386 387
      pten::ReshapeKernel(static_cast<const pten::CPUContext &>(dev_ctx), *in,
                          pt_scalar_shape, out);
388
    }
389
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
390 391
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
W
Wilber 已提交
392 393
      pten::ReshapeKernel(static_cast<const pten::GPUContext &>(dev_ctx), *in,
                          pt_scalar_shape, out);
394
    }
395 396
#endif
#ifdef PADDLE_WITH_XPU
397 398
    if (platform::is_xpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
399 400
      pten::ReshapeKernel(static_cast<const pten::XPUContext &>(dev_ctx), *in,
                          pt_scalar_shape, out);
401
    }
402
#endif
Y
yuyang18 已提交
403
  }
Y
yuyang18 已提交
404 405 406 407 408 409 410
};

class ReshapeGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto *d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
411
    d_x->mutable_data(ctx.GetPlace(), d_out->type());
412 413 414

    if (platform::is_cpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
W
Wilber 已提交
415
      pten::ReshapeGradKernel(static_cast<const pten::CPUContext &>(dev_ctx),
416
                              *d_out, d_x);
417 418 419 420
    }
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
W
Wilber 已提交
421 422
      pten::ReshapeGradKernel(static_cast<const pten::GPUContext &>(dev_ctx),
                              *d_out, d_x);
423 424 425 426 427
    }
#endif
#ifdef PADDLE_WITH_XPU
    if (platform::is_xpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
W
Wilber 已提交
428
      pten::ReshapeGradKernel(static_cast<const pten::XPUContext &>(dev_ctx),
429
                              *d_out, d_x);
430 431
    }
#endif
Y
yuyang18 已提交
432
  }
Y
yuyang18 已提交
433 434
};

435 436 437 438 439
class ReshapeDoubleGradKernel {
 public:
  void operator()(const framework::ExecutionContext &ctx) const {
    auto *dd_x = ctx.Input<framework::Tensor>("DDX");
    auto *dd_out = ctx.Output<framework::Tensor>("DDOut");
440
    dd_out->mutable_data(ctx.GetPlace(), dd_x->type());
441

442 443
    if (platform::is_cpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CPUDeviceContext>();
W
Wilber 已提交
444
      pten::ReshapeDoubleGradKernel(
445
          static_cast<const pten::CPUContext &>(dev_ctx), *dd_x, dd_out);
446 447 448 449
    }
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::CUDADeviceContext>();
W
Wilber 已提交
450 451
      pten::ReshapeDoubleGradKernel(
          static_cast<const pten::GPUContext &>(dev_ctx), *dd_x, dd_out);
452 453 454 455 456
    }
#endif
#ifdef PADDLE_WITH_XPU
    if (platform::is_xpu_place(ctx.GetPlace())) {
      auto &dev_ctx = ctx.device_context<platform::XPUDeviceContext>();
W
Wilber 已提交
457
      pten::ReshapeDoubleGradKernel(
458
          static_cast<const pten::XPUContext &>(dev_ctx), *dd_x, dd_out);
459 460
    }
#endif
461 462 463
  }
};

464 465 466 467 468 469 470 471 472 473 474 475 476
// FIXME(zcd): reshape2 adds an intermediate output(XShape) based on reshape,
// the XShape is used to carry the shape and lod of X which will be used in
// reshape_grad, in this way, the framework can reuse the memory of X
// immediately the reshape_op is finished.
// Considering compatibility issues, we could not fix reshape_op
class Reshape2Op : public ReshapeOp {
 public:
  Reshape2Op(const std::string &type, const framework::VariableNameMap &inputs,
             const framework::VariableNameMap &outputs,
             const framework::AttributeMap &attrs)
      : ReshapeOp(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
477
    PADDLE_ENFORCE_EQ(ctx->HasOutput("XShape"), true,
478 479
                      platform::errors::InvalidArgument(
                          "Output(XShape) of ReshapeOp should not be null."));
480 481 482 483 484 485 486 487
    const auto &x_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
M
minqiyang 已提交
488 489

    ReshapeOp::InferShape(ctx);
490 491 492 493 494 495 496 497 498 499 500
  }
};

class Reshape2OpMaker : public ReshapeOpMaker {
 public:
  void Make() override {
    ReshapeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
501 502 503 504
    AddAttr<bool>(
        "use_quantizer",
        "(bool, default false) "
        "This parameter is no longer used. Use 'mkldnn_data_type' instead.")
505
        .SetDefault(false);
506 507 508 509
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
510 511
        .InEnum({"float32", "int8", "bfloat16"})
        .AsExtra();
512 513 514
  }
};

H
hong 已提交
515 516
template <typename T>
class Reshape2GradMaker : public framework::SingleGradOpMaker<T> {
517
 public:
H
hong 已提交
518
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
519

520
  void Apply(GradOpPtr<T> grad_op) const override {
521
    grad_op->SetType("reshape2_grad");
H
hong 已提交
522 523 524 525
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
526 527 528
  }
};

H
hong 已提交
529 530
template <typename T>
class Reshape2DoubleGradMaker : public framework::SingleGradOpMaker<T> {
531
 public:
H
hong 已提交
532
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
533

534
  void Apply(GradOpPtr<T> grad_op) const override {
535
    grad_op->SetType("reshape2_grad_grad");
H
hong 已提交
536 537 538 539
    grad_op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    grad_op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
540 541 542
  }
};

543 544 545 546 547 548 549 550 551
class Reshape2GradOp : public framework::OperatorWithKernel {
 public:
  Reshape2GradOp(const std::string &type,
                 const framework::VariableNameMap &inputs,
                 const framework::VariableNameMap &outputs,
                 const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
552 553 554
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("XShape"), true,
        platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
555
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
556 557
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) shouldn't be null."));
558 559 560 561 562 563 564 565 566
    auto xshape_dims = ctx->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
567 568 569 570
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
571
  }
572 573 574 575 576 577 578 579 580 581

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
582 583 584 585 586 587 588

  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
    return framework::KernelSignature("reshape_grad",
                                      {framework::GradVarName("Out")}, {},
                                      {framework::GradVarName("X")});
  }
589 590
};

591 592 593 594 595 596 597 598 599 600
class Reshape2DoubleGradOp : public framework::OperatorWithKernel {
 public:
  Reshape2DoubleGradOp(const std::string &type,
                       const framework::VariableNameMap &inputs,
                       const framework::VariableNameMap &outputs,
                       const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(ctx->HasInput("DDX"), true,
601 602
                      platform::errors::InvalidArgument(
                          "Input(X@GRAD_GRAD) shouldn't be null."));
603 604 605 606 607 608 609 610
    if (ctx->HasOutput("DDOut") && ctx->HasInput("DDX")) {
      ctx->ShareDim("DOut", "DDOut");
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
611 612 613
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "DDX"),
        ctx.device_context());
614 615 616 617 618 619 620 621 622 623 624
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "ShapeTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
625 626 627 628 629
  framework::KernelSignature GetExpectedPtenKernelArgs(
      const framework::ExecutionContext &ctx) const override {
    return framework::KernelSignature("reshape_double_grad", {"DDX"}, {},
                                      {"DDOut"});
  }
630 631
};

632 633
DECLARE_INPLACE_OP_INFERER(ReshapeOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(ReshapeGradInplaceInferer,
634 635
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
636 637
DECLARE_INPLACE_OP_INFERER(ReshapeDoubleGradInplaceInferer, {"DDX", "DDOut"});
DECLARE_NO_NEED_BUFFER_VARS_INFERER(ReshapeDoubleGradOpNoNeedBufferVarInferer,
Z
Zeng Jinle 已提交
638
                                    "DOut");
D
dzhwinter 已提交
639

Y
Yibing Liu 已提交
640 641 642
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;
643
namespace plat = paddle::platform;
Y
Yibing Liu 已提交
644

H
hong 已提交
645 646 647 648
REGISTER_OPERATOR(
    reshape, ops::ReshapeOp, ops::ReshapeOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>,
649
    ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
650
REGISTER_OPERATOR(reshape_grad, ops::ReshapeGradOp,
651
                  ops::ReshapeGradInplaceInferer);
652

653 654 655 656 657 658 659
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel);
REGISTER_OP_CPU_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel);
660
REGISTER_OPERATOR(reshape2, ops::Reshape2Op, ops::Reshape2OpMaker,
H
hong 已提交
661 662
                  ops::Reshape2GradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2GradMaker<paddle::imperative::OpBase>,
663
                  ops::ReshapeOpInplaceInferer);
D
dzhwinter 已提交
664
REGISTER_OPERATOR(reshape2_grad, ops::Reshape2GradOp,
H
hong 已提交
665 666
                  ops::Reshape2DoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Reshape2DoubleGradMaker<paddle::imperative::OpBase>,
667
                  ops::ReshapeGradInplaceInferer);
668
REGISTER_OPERATOR(reshape2_grad_grad, ops::Reshape2DoubleGradOp,
669 670
                  ops::ReshapeDoubleGradInplaceInferer,
                  ops::ReshapeDoubleGradOpNoNeedBufferVarInferer);
671

672 673 674 675
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2, float, ops::ReshapeKernel, double, ops::ReshapeKernel, int8_t,
    ops::ReshapeKernel, uint8_t, ops::ReshapeKernel, int, ops::ReshapeKernel,
    int64_t, ops::ReshapeKernel, bool, ops::ReshapeKernel,
676 677 678
    paddle::platform::bfloat16, ops::ReshapeKernel,
    paddle::platform::complex<float>, ops::ReshapeKernel,
    paddle::platform::complex<double>, ops::ReshapeKernel);
679 680 681 682 683

REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, bool,
J
Jacek Czaja 已提交
684
    ops::ReshapeGradKernel, paddle::platform::bfloat16, ops::ReshapeGradKernel,
685 686
    paddle::platform::complex<float>, ops::ReshapeGradKernel,
    paddle::platform::complex<double>, ops::ReshapeGradKernel);
687 688 689 690
REGISTER_OP_CPU_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel, bool,
J
Jacek Czaja 已提交
691
    ops::ReshapeDoubleGradKernel, paddle::platform::bfloat16,
692 693
    ops::ReshapeDoubleGradKernel, paddle::platform::complex<float>,
    ops::ReshapeDoubleGradKernel, paddle::platform::complex<double>,
694
    ops::ReshapeDoubleGradKernel);
695

696
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
697 698
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
699 700
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
701
                                ops::ReshapeKernel);
702 703 704
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape_grad, float, ops::ReshapeGradKernel,
                                double, ops::ReshapeGradKernel, int,
                                ops::ReshapeGradKernel, int64_t,
J
joejiong 已提交
705
                                ops::ReshapeGradKernel, uint8_t,
706
                                ops::ReshapeGradKernel, plat::float16,
707

708 709 710
                                ops::ReshapeGradKernel);
REGISTER_OP_CUDA_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                                ops::ReshapeKernel, int, ops::ReshapeKernel,
J
joejiong 已提交
711 712
                                uint8_t, ops::ReshapeKernel, int64_t,
                                ops::ReshapeKernel, plat::float16,
713
                                ops::ReshapeKernel, bool, ops::ReshapeKernel,
714 715
                                plat::complex<float>, ops::ReshapeKernel,
                                plat::complex<double>, ops::ReshapeKernel);
716 717 718 719
REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad, float, ops::ReshapeGradKernel, double,
    ops::ReshapeGradKernel, int, ops::ReshapeGradKernel, uint8_t,
    ops::ReshapeGradKernel, int64_t, ops::ReshapeGradKernel, plat::float16,
720 721
    ops::ReshapeGradKernel, bool, ops::ReshapeGradKernel, plat::complex<float>,
    ops::ReshapeGradKernel, plat::complex<double>, ops::ReshapeGradKernel);
722 723 724 725 726 727

REGISTER_OP_CUDA_KERNEL_FUNCTOR(
    reshape2_grad_grad, float, ops::ReshapeDoubleGradKernel, double,
    ops::ReshapeDoubleGradKernel, int, ops::ReshapeDoubleGradKernel, uint8_t,
    ops::ReshapeDoubleGradKernel, int64_t, ops::ReshapeDoubleGradKernel,
    plat::float16, ops::ReshapeDoubleGradKernel, bool,
728 729 730
    ops::ReshapeDoubleGradKernel, plat::complex<float>,
    ops::ReshapeDoubleGradKernel, plat::complex<double>,
    ops::ReshapeDoubleGradKernel);
Y
yuyang18 已提交
731
#endif
732 733 734 735 736

#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2, float, ops::ReshapeKernel, double,
                               ops::ReshapeKernel, int, ops::ReshapeKernel,
                               int64_t, ops::ReshapeKernel, plat::float16,
737
                               ops::ReshapeKernel, bool, ops::ReshapeKernel,
738 739
                               plat::complex<float>, ops::ReshapeKernel,
                               plat::complex<double>, ops::ReshapeKernel);
740 741 742 743
REGISTER_OP_XPU_KERNEL_FUNCTOR(reshape2_grad, float, ops::ReshapeGradKernel,
                               double, ops::ReshapeGradKernel, int,
                               ops::ReshapeGradKernel, int64_t,
                               ops::ReshapeGradKernel, plat::float16,
744
                               ops::ReshapeGradKernel, bool,
745 746
                               ops::ReshapeGradKernel, plat::complex<float>,
                               ops::ReshapeGradKernel, plat::complex<double>,
747
                               ops::ReshapeGradKernel);
748
#endif