slice_mkldnn_op.cc 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/utils.h"
16 17
#include "paddle/fluid/platform/mkldnn_reuse.h"

18
static dnnl::memory::format_tag get_plain_format_tag(
19 20 21 22 23
    const paddle::framework::Tensor* tensor) {
  auto tensor_dims_size = tensor->dims().size();

  switch (tensor_dims_size) {
    case 1:
24
      return dnnl::memory::format_tag::a;
25
    case 2:
26
      return dnnl::memory::format_tag::ab;
27
    case 3:
28
      return dnnl::memory::format_tag::abc;
29
    case 4:
30
      return dnnl::memory::format_tag::abcd;
31
    case 5:
32
      return dnnl::memory::format_tag::abcde;
33 34
  }

35
  return dnnl::memory::format_tag::abcdef;
36 37
}

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
namespace paddle {
namespace operators {

using paddle::framework::Tensor;

template <typename T>
class SliceMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("Input");
    auto* out = ctx.Output<Tensor>("Out");

    auto x_vec_dims = framework::vectorize(x->dims());

    auto axes_int = ctx.Attr<std::vector<int>>("axes");
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");

    std::vector<int64_t> axes(ctx.Attr<std::vector<int>>("axes").begin(),
                              ctx.Attr<std::vector<int>>("axes").end());
    std::vector<int64_t> starts(ctx.Attr<std::vector<int>>("starts").begin(),
                                ctx.Attr<std::vector<int>>("starts").end());
    std::vector<int64_t> ends(ctx.Attr<std::vector<int>>("ends").begin(),
                              ctx.Attr<std::vector<int>>("ends").end());

71 72 73 74 75 76 77
    auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
    if (ctx.HasInput("StartsTensor")) {
      starts = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("StartsTensor"));
    } else if (starts_tensor_list.size() > 0) {
      starts = GetDataFromTensorList<int64_t>(starts_tensor_list);
    }

78 79
    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");

80 81 82 83 84 85 86
    auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
    if (ctx.HasInput("EndsTensor")) {
      ends = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("EndsTensor"));
    } else if (ends_tensor_list.size() > 0) {
      ends = GetDataFromTensorList<int64_t>(ends_tensor_list);
    }

87 88 89 90 91 92 93 94 95 96 97
    std::vector<int64_t> offsets(x_vec_dims.size(), 0);
    std::vector<int64_t> slice_dims(x_vec_dims);

    for (size_t i = 0; i < axes.size(); ++i) {
      starts[i] = starts[i] < 0 ? x_vec_dims[axes[i]] + starts[i] : starts[i];
      ends[i] = ends[i] < 0 ? x_vec_dims[axes[i]] + ends[i]
                            : std::min(ends[i], x_vec_dims[axes[i]]);
      offsets[axes[i]] = starts[i];
      slice_dims[axes[i]] = ends[i] - starts[i];
    }

98 99
    out->Resize(framework::make_ddim(slice_dims));

100
    dnnl::memory::data_type x_type = framework::ToMKLDNNDataType(x->type());
101

102 103
    platform::ReorderMKLDNNHandler reorder_handler(x_vec_dims, x->type(),
                                                   x_type, onednn_engine);
104 105 106 107 108 109

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
        x->format(), platform::to_void_cast(x->data<T>()));
    auto slice_mem_p = reorder_handler.AcquireSubmemory(slice_dims, offsets,
                                                        reorder_src_memory_p);
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
110
        out, slice_dims, get_plain_format_tag(x), ctx.GetPlace());
111 112 113 114 115 116

    auto reorder_p =
        reorder_handler.AcquireReorder(reorder_dst_memory_p, slice_mem_p);
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *slice_mem_p, *reorder_dst_memory_p);

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    std::vector<int64_t> new_out_dims(slice_dims.size() - decrease_axis.size());

    if (new_out_dims.size() == 0) {
      new_out_dims.emplace_back(1);
    } else {
      for (const auto& axis : decrease_axis) {
        slice_dims[axis] = 0;
      }

      int i = 0;
      for (const auto& slice_dim : slice_dims) {
        if (slice_dim != 0) new_out_dims[i++] = slice_dim;
      }
    }

    astream.wait();
    out->Resize(framework::make_ddim(new_out_dims));
134 135
    out->set_layout(framework::DataLayout::kMKLDNN);
    out->set_format(platform::GetMKLDNNFormat(
136
        reorder_dst_memory_p->get_desc().reshape(new_out_dims)));
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
  }
};
template <typename T>
class SliceGradMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    this->RunKernel(ctx);
  }

  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("Input"));

    auto dx_vec_dims = framework::vectorize(dx->dims());
    auto dout_vec_dims = framework::vectorize(dout->dims());

    auto axes_int = ctx.Attr<std::vector<int>>("axes");
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");

    std::vector<int64_t> axes(ctx.Attr<std::vector<int>>("axes").begin(),
                              ctx.Attr<std::vector<int>>("axes").end());
    std::vector<int64_t> starts(ctx.Attr<std::vector<int>>("starts").begin(),
                                ctx.Attr<std::vector<int>>("starts").end());
    std::vector<int64_t> ends(ctx.Attr<std::vector<int>>("ends").begin(),
                              ctx.Attr<std::vector<int>>("ends").end());

168 169 170 171 172 173 174 175 176 177 178 179 180 181
    auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
    if (ctx.HasInput("StartsTensor")) {
      starts = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("StartsTensor"));
    } else if (starts_tensor_list.size() > 0) {
      starts = GetDataFromTensorList<int64_t>(starts_tensor_list);
    }

    auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
    if (ctx.HasInput("EndsTensor")) {
      ends = GetDataFromTensor<int64_t>(ctx.Input<Tensor>("EndsTensor"));
    } else if (ends_tensor_list.size() > 0) {
      ends = GetDataFromTensorList<int64_t>(ends_tensor_list);
    }

182 183 184 185 186 187 188 189 190 191 192 193 194
    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");

    std::vector<int64_t> offsets(dx_vec_dims.size(), 0);
    std::vector<int64_t> slice_dims(dx_vec_dims);

    for (size_t i = 0; i < axes.size(); ++i) {
      starts[i] = starts[i] < 0 ? dx_vec_dims[axes[i]] + starts[i] : starts[i];
      ends[i] = ends[i] < 0 ? dx_vec_dims[axes[i]] + ends[i]
                            : std::min(ends[i], dx_vec_dims[axes[i]]);
      offsets[axes[i]] = starts[i];
      slice_dims[axes[i]] = ends[i] - starts[i];
    }

195
    dnnl::memory::data_type dout_type =
196
        framework::ToMKLDNNDataType(dout->type());
197 198 199
    dnnl::memory::desc md(dout_vec_dims, platform::MKLDNNGetDataType<T>(),
                          dout->format());
    dnnl::memory::format_tag reorder_format_tag =
200 201
        platform::GetMKLDNNFormat(md.reshape(slice_dims));

202 203
    platform::ReorderMKLDNNHandler reorder_handler(slice_dims, dout->type(),
                                                   dout_type, onednn_engine);
204 205 206 207

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
        reorder_format_tag, platform::to_void_cast(dout->data<T>()));
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
208
        dx, dx_vec_dims, reorder_format_tag, ctx.GetPlace());
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    memset(dx->data<T>(), 0, reorder_dst_memory_p->get_desc().get_size());

    auto slice_mem_p = reorder_handler.AcquireSubmemory(slice_dims, offsets,
                                                        reorder_dst_memory_p);

    auto reorder_p =
        reorder_handler.AcquireReorder(slice_mem_p, reorder_src_memory_p);
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *reorder_src_memory_p, *slice_mem_p);
    astream.wait();

    dx->set_layout(framework::DataLayout::kMKLDNN);
    dx->set_format(reorder_format_tag);
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(slice, MKLDNN, paddle::platform::CPUPlace,
                   ops::SliceMKLDNNKernel<float>,
Z
Zuza 已提交
230 231
                   ops::SliceMKLDNNKernel<int8_t>,
                   ops::SliceMKLDNNKernel<uint8_t>,
232 233 234 235 236
                   ops::SliceMKLDNNKernel<paddle::platform::bfloat16>);

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(slice_grad, MKLDNN, paddle::platform::CPUPlace,
                   ops::SliceGradMKLDNNKernel<float>,
237
                   ops::SliceGradMKLDNNKernel<paddle::platform::bfloat16>);