yolov3_loss_op.cc 12.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/yolov3_loss_op.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class Yolov3LossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("GTBox"),
                   "Input(GTBox) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
28 29
    PADDLE_ENFORCE(ctx->HasInput("GTLabel"),
                   "Input(GTLabel) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
30 31
    PADDLE_ENFORCE(ctx->HasInput("GTScore"),
                   "Input(GTScore) of Yolov3LossOp should not be null.");
D
dengkaipeng 已提交
32 33
    PADDLE_ENFORCE(ctx->HasOutput("Loss"),
                   "Output(Loss) of Yolov3LossOp should not be null.");
34 35 36 37 38
    PADDLE_ENFORCE(
        ctx->HasOutput("ObjectnessMask"),
        "Output(ObjectnessMask) of Yolov3LossOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("GTMatchMask"),
                   "Output(GTMatchMask) of Yolov3LossOp should not be null.");
39 40

    auto dim_x = ctx->GetInputDim("X");
D
dengkaipeng 已提交
41 42
    auto dim_gtbox = ctx->GetInputDim("GTBox");
    auto dim_gtlabel = ctx->GetInputDim("GTLabel");
D
dengkaipeng 已提交
43
    auto dim_gtscore = ctx->GetInputDim("GTScore");
44
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
45
    int anchor_num = anchors.size() / 2;
46 47
    auto anchor_mask = ctx->Attrs().Get<std::vector<int>>("anchor_mask");
    int mask_num = anchor_mask.size();
48
    auto class_num = ctx->Attrs().Get<int>("class_num");
49

D
dengkaipeng 已提交
50 51 52
    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
    PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
                      "Input(X) dim[3] and dim[4] should be euqal.");
53 54 55 56
    PADDLE_ENFORCE_EQ(
        dim_x[1], mask_num * (5 + class_num),
        "Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
        "+ class_num)).");
D
dengkaipeng 已提交
57 58 59 60
    PADDLE_ENFORCE_EQ(dim_gtbox.size(), 3,
                      "Input(GTBox) should be a 3-D tensor");
    PADDLE_ENFORCE_EQ(dim_gtbox[2], 4, "Input(GTBox) dim[2] should be 5");
    PADDLE_ENFORCE_EQ(dim_gtlabel.size(), 2,
D
dengkaipeng 已提交
61
                      "Input(GTLabel) should be a 2-D tensor");
D
dengkaipeng 已提交
62 63 64 65
    PADDLE_ENFORCE_EQ(dim_gtlabel[0], dim_gtbox[0],
                      "Input(GTBox) and Input(GTLabel) dim[0] should be same");
    PADDLE_ENFORCE_EQ(dim_gtlabel[1], dim_gtbox[1],
                      "Input(GTBox) and Input(GTLabel) dim[1] should be same");
D
dengkaipeng 已提交
66 67 68 69 70 71
    PADDLE_ENFORCE_EQ(dim_gtscore.size(), 2,
                      "Input(GTScore) should be a 2-D tensor");
    PADDLE_ENFORCE_EQ(dim_gtscore[0], dim_gtbox[0],
                      "Input(GTBox) and Input(GTScore) dim[0] should be same");
    PADDLE_ENFORCE_EQ(dim_gtscore[1], dim_gtbox[1],
                      "Input(GTBox) and Input(GTScore) dim[1] should be same");
72 73 74 75
    PADDLE_ENFORCE_GT(anchors.size(), 0,
                      "Attr(anchors) length should be greater then 0.");
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
                      "Attr(anchors) length should be even integer.");
76 77 78 79 80
    for (size_t i = 0; i < anchor_mask.size(); i++) {
      PADDLE_ENFORCE_LT(
          anchor_mask[i], anchor_num,
          "Attr(anchor_mask) should not crossover Attr(anchors).");
    }
81 82 83
    PADDLE_ENFORCE_GT(class_num, 0,
                      "Attr(class_num) should be an integer greater then 0.");

84
    std::vector<int64_t> dim_out({dim_x[0]});
D
dengkaipeng 已提交
85
    ctx->SetOutputDim("Loss", framework::make_ddim(dim_out));
86 87 88 89 90 91

    std::vector<int64_t> dim_obj_mask({dim_x[0], mask_num, dim_x[2], dim_x[3]});
    ctx->SetOutputDim("ObjectnessMask", framework::make_ddim(dim_obj_mask));

    std::vector<int64_t> dim_gt_match_mask({dim_gtbox[0], dim_gtbox[1]});
    ctx->SetOutputDim("GTMatchMask", framework::make_ddim(dim_gt_match_mask));
92 93 94 95 96
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
97 98
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   platform::CPUPlace());
99 100 101 102 103 104 105
  }
};

class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
106
             "The input tensor of YOLOv3 loss operator, "
D
dengkaipeng 已提交
107 108 109 110
             "This is a 4-D tensor with shape of [N, C, H, W]."
             "H and W should be same, and the second dimention(C) stores"
             "box locations, confidence score and classification one-hot"
             "key of each anchor box");
111 112 113 114
    AddInput("GTBox",
             "The input tensor of ground truth boxes, "
             "This is a 3-D tensor with shape of [N, max_box_num, 5], "
             "max_box_num is the max number of boxes in each image, "
D
dengkaipeng 已提交
115 116 117 118 119 120 121
             "In the third dimention, stores x, y, w, h coordinates, "
             "x, y is the center cordinate of boxes and w, h is the "
             "width and height and x, y, w, h should be divided by "
             "input image height to scale to [0, 1].");
    AddInput("GTLabel",
             "The input tensor of ground truth label, "
             "This is a 2-D tensor with shape of [N, max_box_num], "
D
dengkaipeng 已提交
122
             "and each element should be an integer to indicate the "
D
dengkaipeng 已提交
123
             "box class id.");
D
dengkaipeng 已提交
124 125 126 127 128
    AddInput("GTScore",
             "The score of GTLabel, This is a 2-D tensor in same shape "
             "GTLabel, and score values should in range (0, 1). This "
             "input is for GTLabel score can be not 1.0 in image mixup "
             "augmentation.");
D
dengkaipeng 已提交
129 130
    AddOutput("Loss",
              "The output yolov3 loss tensor, "
131
              "This is a 1-D tensor with shape of [N]");
132 133 134 135 136 137 138 139 140 141
    AddOutput("ObjectnessMask",
              "This is an intermediate tensor with shape of [N, M, H, W], "
              "M is the number of anchor masks. This parameter caches the "
              "mask for calculate objectness loss in gradient kernel.")
        .AsIntermediate();
    AddOutput("GTMatchMask",
              "This is an intermediate tensor with shape if [N, B], "
              "B is the max box number of GT boxes. This parameter caches "
              "matched mask index of each GT boxes for gradient calculate.")
        .AsIntermediate();
142 143

    AddAttr<int>("class_num", "The number of classes to predict.");
D
dengkaipeng 已提交
144 145
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
146 147 148 149 150 151 152 153 154 155 156
                              "it will be parsed pair by pair.")
        .SetDefault(std::vector<int>{});
    AddAttr<std::vector<int>>("anchor_mask",
                              "The mask index of anchors used in "
                              "current YOLOv3 loss calculation.")
        .SetDefault(std::vector<int>{});
    AddAttr<int>("downsample",
                 "The downsample ratio from network input to YOLOv3 loss "
                 "input, so 32, 16, 8 should be set for the first, second, "
                 "and thrid YOLOv3 loss operators.")
        .SetDefault(32);
D
dengkaipeng 已提交
157
    AddAttr<float>("ignore_thresh",
158 159
                   "The ignore threshold to ignore confidence loss.")
        .SetDefault(0.7);
160 161
    AddAttr<bool>("use_label_smooth", "bool,default True", "use label smooth")
        .SetDefault(true);
162 163 164
    AddComment(R"DOC(
         This operator generate yolov3 loss by given predict result and ground
         truth boxes.
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
         
         The output of previous network is in shape [N, C, H, W], while H and W
         should be the same, specify the grid size, each grid point predict given
         number boxes, this given number is specified by anchors, it should be 
         half anchors length, which following will be represented as S. In the 
         second dimention(the channel dimention), C should be S * (class_num + 5),
         class_num is the box categoriy number of source dataset(such as coco), 
         so in the second dimention, stores 4 box location coordinates x, y, w, h 
         and confidence score of the box and class one-hot key of each anchor box.

         While the 4 location coordinates if $$tx, ty, tw, th$$, the box predictions
         correspnd to:

         $$
         b_x = \sigma(t_x) + c_x
         b_y = \sigma(t_y) + c_y
         b_w = p_w e^{t_w}
         b_h = p_h e^{t_h}
         $$

         While $$c_x, c_y$$ is the left top corner of current grid and $$p_w, p_h$$
         is specified by anchors.

         As for confidence score, it is the logistic regression value of IoU between
         anchor boxes and ground truth boxes, the score of the anchor box which has 
         the max IoU should be 1, and if the anchor box has IoU bigger then ignore 
         thresh, the confidence score loss of this anchor box will be ignored.

         Therefore, the yolov3 loss consist of three major parts, box location loss,
194 195 196 197 198 199 200 201 202 203 204
         confidence score loss, and classification loss. The L1 loss is used for 
         box coordinates (w, h), and sigmoid cross entropy loss is used for box 
         coordinates (x, y), confidence score loss and classification loss.

         In order to trade off box coordinate losses between big boxes and small 
         boxes, box coordinate losses will be mutiplied by scale weight, which is
         calculated as follow.

         $$
         weight_{box} = 2.0 - t_w * t_h
         $$
D
dengkaipeng 已提交
205 206 207 208

         Final loss will be represented as follow.

         $$
209 210
         loss = (loss_{xy} + loss_{wh}) * weight_{box}
              + loss_{conf} + loss_{class}
D
dengkaipeng 已提交
211
         $$
212 213 214 215 216 217 218 219 220
         )DOC");
  }
};

class Yolov3LossOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
D
dengkaipeng 已提交
221 222
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
                   "Input(Loss@GRAD) should not be null");
223 224 225 226 227 228
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

229
 protected:
230 231
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
232 233
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   platform::CPUPlace());
234 235 236
  }
};

237 238 239 240 241 242 243 244 245 246
class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("yolov3_loss_grad");
    op->SetInput("X", Input("X"));
    op->SetInput("GTBox", Input("GTBox"));
D
dengkaipeng 已提交
247
    op->SetInput("GTLabel", Input("GTLabel"));
D
dengkaipeng 已提交
248
    op->SetInput("GTScore", Input("GTScore"));
249
    op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
250 251
    op->SetInput("ObjectnessMask", Output("ObjectnessMask"));
    op->SetInput("GTMatchMask", Output("GTMatchMask"));
252 253 254 255 256

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("GTBox"), {});
D
dengkaipeng 已提交
257
    op->SetOutput(framework::GradVarName("GTLabel"), {});
D
dengkaipeng 已提交
258
    op->SetOutput(framework::GradVarName("GTScore"), {});
259 260 261 262
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

263 264 265 266 267
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(yolov3_loss, ops::Yolov3LossOp, ops::Yolov3LossOpMaker,
268
                  ops::Yolov3LossGradMaker);
269
REGISTER_OPERATOR(yolov3_loss_grad, ops::Yolov3LossOpGrad);
270 271 272 273
REGISTER_OP_CPU_KERNEL(yolov3_loss, ops::Yolov3LossKernel<float>,
                       ops::Yolov3LossKernel<double>);
REGISTER_OP_CPU_KERNEL(yolov3_loss_grad, ops::Yolov3LossGradKernel<float>,
                       ops::Yolov3LossGradKernel<double>);