gather_func.h 3.6 KB
Newer Older
Z
Zhuoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <cstring>
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"
#include "paddle/framework/ddim.h"

/**
 * Return a new tensor from source tensor, gathered according to index
 * input[src]: type-T source Tensor
Z
Zhuoyuan 已提交
24
 * input[index]: type-int index Tensor (1-D)
Z
Zhuoyuan 已提交
25 26
 * return: output tensor
 */
Z
Zhuoyuan 已提交
27 28 29 30 31
template <typename Place, typename T>
Tensor* Gather(Tensor* src, Tensor* index) {
  // check index of shape 1-D
  PADDLE_ENFORCE(index->dims().size()==1);
  int index_size = index->dims()[0];
Z
Zhuoyuan 已提交
32

Z
Zhuoyuan 已提交
33 34 35 36 37
  // Source shape
  auto src_dims = src->dims();
  DDim output_dims(dims_src);
  // Create a tensor of shape [index_size, dim_src[1:]]
  output_dims[0] = index_size;
Z
Zhuoyuan 已提交
38

Z
Zhuoyuan 已提交
39 40
  Tensor* New_tensor;
  float* output = nullptr;
Z
Zhuoyuan 已提交
41

Z
Zhuoyuan 已提交
42 43 44 45
  /* slice size */
  int slice_size = 1;
  for(unsigned int i = 0; i < src_dims.size(); ++i)
	slice_size *= src_dims[i];
Z
Zhuoyuan 已提交
46

Z
Zhuoyuan 已提交
47 48 49 50 51 52 53 54 55 56 57 58
  /* Gathering */
  if (place == CPUPlace()) {
	// init for CPU
	output = New_tensor.mutable_data<T>(output_dims, CPUPlace());
	CPUGather(src->data(), index->data(), slice_size, new_tensor->mutable_data());
  } else { // GPU
	// init for GPU
	output = New_tensor.mutable_data<T>(output_dims, GPUPlace());
	/* how to specialize device??*/
	GPUGather(d, src->data(), index->data(), slice_size, new_tensor->mutable_data());
  }
  return New_tensor;
Z
Zhuoyuan 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
}

/* Implementation of CPU copy */
template<typename T>
void CPUGather(const T* params, const int* indices, 
			   const int slice_size, const int index_size,
			   T* output) {
  const size_t slice_bytes = slice_size * sizeof(T);

  for(int i = 0; i < index_size; ++i)
  	int index_ = indices[i];
  	/* copy src[index_] to output[i] */
  	memcpy(output + i * slice_bytes,
  		params + index_ * slice_bytes,
  		slice_bytes);
}

/* Implementation of GPU copy:
   I suppose the GPUDevice& d, contains gpu_id and thread_id
   d = cuda_stream(gpu_id_, stream_id_);
*/
template<typename T>
void GPUGather(const GPUDevice& d,
Z
Zhuoyuan 已提交
82
			   const T* src, const int* index, 
Z
Zhuoyuan 已提交
83 84
	           const int slice_size, const int index_size,
	           T* output) {
Z
Zhuoyuan 已提交
85 86
  int block_count = slice_size * index_size;
  int thread_per_block = 1024;
Z
Zhuoyuan 已提交
87

Z
Zhuoyuan 已提交
88
  GatherOpKernel<T>
Z
Zhuoyuan 已提交
89
          <<<block_count, thread_per_block, 0, d.stream()>>>(
Z
Zhuoyuan 已提交
90
              src, index, output, slice_size,
Z
Zhuoyuan 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
              indices_size, slice_size, out_size);
}

template <typename T>
__global__ void GatherOpKernel(const T* params, const int* indices, T* out,
                               int64 indices_size,
                               int64 slice_size, int64 out_size) {
  /* I suppose we have the following macro, 
     which I strongly suggest that we should put in cuda:
  #define CUDA_1D_KERNEL_LOOP(i, n)                            \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
       i += blockDim.x * gridDim.x)
  */
  CUDA_1D_KERNEL_LOOP(i, out_size) {
    int indices_i = i / slice_size;
    int slice_i = i - indices_i * slice_size; // offset inside the slice
    int gather_i = indices[indices_i];
    int params_i = gather_i * slice_size + slice_i;
    out[i] = *(params + params_i);
  } 
}