test_rnn_encoder_decoder.py 10.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
16
import paddle
17 18 19 20
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle.fluid.framework as framework
import paddle.fluid.layers as layers
21
import contextlib
22 23
import math
import sys
24
import unittest
25
from paddle.fluid.executor import Executor
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
hidden_dim = 32
embedding_dim = 16
batch_size = 10
max_length = 50
topk_size = 50
encoder_size = decoder_size = hidden_dim
IS_SPARSE = True
USE_PEEPHOLES = False


def bi_lstm_encoder(input_seq, hidden_size):
    input_forward_proj = fluid.layers.fc(input=input_seq,
                                         size=hidden_size * 4,
                                         bias_attr=True)
    forward, _ = fluid.layers.dynamic_lstm(
        input=input_forward_proj,
        size=hidden_size * 4,
        use_peepholes=USE_PEEPHOLES)
    input_backward_proj = fluid.layers.fc(input=input_seq,
                                          size=hidden_size * 4,
                                          bias_attr=True)
    backward, _ = fluid.layers.dynamic_lstm(
        input=input_backward_proj,
        size=hidden_size * 4,
        is_reverse=True,
        use_peepholes=USE_PEEPHOLES)
P
peterzhang2029 已提交
56 57 58 59 60

    forward_last = fluid.layers.sequence_last_step(input=forward)
    backward_first = fluid.layers.sequence_first_step(input=backward)

    return forward_last, backward_first
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125


# FIXME(peterzhang2029): Replace this function with the lstm_unit_op.
def lstm_step(x_t, hidden_t_prev, cell_t_prev, size):
    def linear(inputs):
        return fluid.layers.fc(input=inputs, size=size, bias_attr=True)

    forget_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
    input_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
    output_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
    cell_tilde = fluid.layers.tanh(x=linear([hidden_t_prev, x_t]))

    cell_t = fluid.layers.sums(input=[
        fluid.layers.elementwise_mul(
            x=forget_gate, y=cell_t_prev), fluid.layers.elementwise_mul(
                x=input_gate, y=cell_tilde)
    ])

    hidden_t = fluid.layers.elementwise_mul(
        x=output_gate, y=fluid.layers.tanh(x=cell_t))

    return hidden_t, cell_t


def lstm_decoder_without_attention(target_embedding, decoder_boot, context,
                                   decoder_size):
    rnn = fluid.layers.DynamicRNN()

    cell_init = fluid.layers.fill_constant_batch_size_like(
        input=decoder_boot,
        value=0.0,
        shape=[-1, decoder_size],
        dtype='float32')
    cell_init.stop_gradient = False

    with rnn.block():
        current_word = rnn.step_input(target_embedding)
        context = rnn.static_input(context)

        hidden_mem = rnn.memory(init=decoder_boot, need_reorder=True)
        cell_mem = rnn.memory(init=cell_init)
        decoder_inputs = fluid.layers.concat(
            input=[context, current_word], axis=1)
        h, c = lstm_step(decoder_inputs, hidden_mem, cell_mem, decoder_size)
        rnn.update_memory(hidden_mem, h)
        rnn.update_memory(cell_mem, c)
        out = fluid.layers.fc(input=h,
                              size=target_dict_dim,
                              bias_attr=True,
                              act='softmax')
        rnn.output(out)
    return rnn()


def seq_to_seq_net():
    """Construct a seq2seq network."""

    src_word_idx = fluid.layers.data(
        name='source_sequence', shape=[1], dtype='int64', lod_level=1)

    src_embedding = fluid.layers.embedding(
        input=src_word_idx,
        size=[source_dict_dim, embedding_dim],
        dtype='float32')

P
peterzhang2029 已提交
126
    src_forward_last, src_backward_first = bi_lstm_encoder(
127 128
        input_seq=src_embedding, hidden_size=encoder_size)

P
peterzhang2029 已提交
129 130
    encoded_vector = fluid.layers.concat(
        input=[src_forward_last, src_backward_first], axis=1)
131

P
peterzhang2029 已提交
132
    decoder_boot = fluid.layers.fc(input=src_backward_first,
133 134 135 136 137 138 139 140 141 142 143 144 145
                                   size=decoder_size,
                                   bias_attr=False,
                                   act='tanh')

    trg_word_idx = fluid.layers.data(
        name='target_sequence', shape=[1], dtype='int64', lod_level=1)

    trg_embedding = fluid.layers.embedding(
        input=trg_word_idx,
        size=[target_dict_dim, embedding_dim],
        dtype='float32')

    prediction = lstm_decoder_without_attention(trg_embedding, decoder_boot,
P
peterzhang2029 已提交
146
                                                encoded_vector, decoder_size)
147 148 149
    label = fluid.layers.data(
        name='label_sequence', shape=[1], dtype='int64', lod_level=1)
    cost = fluid.layers.cross_entropy(input=prediction, label=label)
Y
Yu Yang 已提交
150
    avg_cost = fluid.layers.mean(cost)
151

K
Kexin Zhao 已提交
152
    return avg_cost, prediction
153 154


155
def train(use_cuda, save_dirname=None):
K
Kexin Zhao 已提交
156
    [avg_cost, prediction] = seq_to_seq_net()
157 158 159 160 161 162 163 164 165

    optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
    optimizer.minimize(avg_cost)

    train_data = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.wmt14.train(dict_size), buf_size=1000),
        batch_size=batch_size)

166
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
167 168 169
    exe = Executor(place)
    exe.run(framework.default_startup_program())

170 171 172 173 174 175 176
    feed_order = ['source_sequence', 'target_sequence', 'label_sequence']
    feed_list = [
        framework.default_main_program().global_block().var(var_name)
        for var_name in feed_order
    ]
    feeder = fluid.DataFeeder(feed_list, place)

177 178 179 180
    batch_id = 0
    for pass_id in xrange(2):
        for data in train_data():
            outs = exe.run(framework.default_main_program(),
181
                           feed=feeder.feed(data),
182
                           fetch_list=[avg_cost])
183

184 185 186
            avg_cost_val = np.array(outs[0])
            print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
                  " avg_cost=" + str(avg_cost_val))
187 188
            if math.isnan(float(avg_cost_val[0])):
                sys.exit("got NaN loss, training failed.")
189
            if batch_id > 3:
K
Kexin Zhao 已提交
190
                if save_dirname is not None:
191 192 193
                    fluid.io.save_inference_model(
                        save_dirname, ['source_sequence',
                                       'target_sequence'], [prediction], exe)
194 195
                return

196 197 198
            batch_id += 1


199
def infer(use_cuda, save_dirname=None):
K
Kexin Zhao 已提交
200 201 202
    if save_dirname is None:
        return

203
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
K
Kexin Zhao 已提交
204 205
    exe = fluid.Executor(place)

206 207 208 209 210 211 212 213 214
    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        # Use fluid.io.load_inference_model to obtain the inference program desc,
        # the feed_target_names (the names of variables that will be feeded
        # data using feed operators), and the fetch_targets (variables that
        # we want to obtain data from using fetch operators).
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        # Setup input by creating LoDTensor to represent sequence of words.
        # Here each word is the basic element of the LoDTensor and the shape of 
        # each word (base_shape) should be [1] since it is simply an index to 
        # look up for the corresponding word vector.
        # Suppose the length_based level of detail (lod) info is set to [[4, 6]],
        # which has only one lod level. Then the created LoDTensor will have only 
        # one higher level structure (sequence of words, or sentence) than the basic 
        # element (word). Hence the LoDTensor will hold data for two sentences of 
        # length 4 and 6, respectively. 
        # Note that lod info should be a list of lists.
        lod = [[4, 6]]
        base_shape = [1]
        # The range of random integers is [low, high]
        word_data = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=1)
        trg_word = fluid.create_random_int_lodtensor(
            lod, base_shape, place, low=0, high=1)
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247

        # Construct feed as a dictionary of {feed_target_name: feed_target_data}
        # and results will contain a list of data corresponding to fetch_targets.
        assert feed_target_names[0] == 'source_sequence'
        assert feed_target_names[1] == 'target_sequence'
        results = exe.run(inference_program,
                          feed={
                              feed_target_names[0]: word_data,
                              feed_target_names[1]: trg_word,
                          },
                          fetch_list=fetch_targets,
                          return_numpy=False)
        print(results[0].lod())
        np_data = np.array(results[0])
        print("Inference shape: ", np_data.shape)
        print("Inference results: ", np_data)
K
Kexin Zhao 已提交
248 249


250 251 252 253 254
def main(use_cuda):
    if use_cuda and not fluid.core.is_compiled_with_cuda():
        return

    # Directory for saving the trained model
K
Kexin Zhao 已提交
255
    save_dirname = "rnn_encoder_decoder.inference.model"
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279

    train(use_cuda, save_dirname)
    infer(use_cuda, save_dirname)


class TestRnnEncoderDecoder(unittest.TestCase):
    def test_cuda(self):
        with self.scope_prog_guard():
            main(use_cuda=True)

    def test_cpu(self):
        with self.scope_prog_guard():
            main(use_cuda=False)

    @contextlib.contextmanager
    def scope_prog_guard(self):
        prog = fluid.Program()
        startup_prog = fluid.Program()
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
            with fluid.program_guard(prog, startup_prog):
                yield


280
if __name__ == '__main__':
281
    unittest.main()