test_chunk_eval_op.py 8.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guosheng 已提交
15 16
import unittest
import numpy as np
17
from op_test import OpTest
G
guosheng 已提交
18 19


20
class Segment(object):
G
guosheng 已提交
21 22 23 24 25 26
    def __init__(self, chunk_type, start_idx, end_idx):
        self.chunk_type = chunk_type
        self.start_idx = start_idx
        self.end_idx = end_idx

    def __str__(self):
27 28
        return '(Segment: %s, %s, %s)' % (self.chunk_type, self.start_idx,
                                          self.end_idx)
G
guosheng 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65

    __repr__ = __str__


class TestChunkEvalOp(OpTest):
    num_sequences = 5
    batch_size = 50

    def parse_scheme(self):
        if self.scheme == 'IOB':
            self.num_tag_types = 2
        elif self.scheme == 'IOE':
            self.num_tag_types = 2

    def fill_with_chunks(self, data, chunks):
        for chunk in chunks:
            if self.scheme == 'IOB':
                data[chunk.start_idx] = chunk.chunk_type * self.num_tag_types
                data[chunk.start_idx + 1:
                     chunk.end_idx] = chunk.chunk_type * self.num_tag_types + (
                         self.num_tag_types - 1)
                data[chunk.end_idx] = chunk.chunk_type * self.num_tag_types + (
                    self.num_tag_types - 1
                ) if chunk.start_idx < chunk.end_idx else data[chunk.start_idx]
            elif self.scheme == 'IOE':
                data[chunk.start_idx:
                     chunk.end_idx] = chunk.chunk_type * self.num_tag_types
                data[chunk.end_idx] = chunk.chunk_type * self.num_tag_types + (
                    self.num_tag_types - 1)

    def rand_chunks(self, starts, num_chunks):
        if num_chunks < 0:
            num_chunks = np.random.randint(starts[-1])
        chunks = []
        # generate chunk beginnings
        chunk_begins = sorted(
            np.random.choice(
66
                list(range(starts[-1])), num_chunks, replace=False))
G
guosheng 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
        seq_chunk_begins = []
        begin_idx = 0
        # divide chunks into sequences
        for i in range(len(starts) - 1):
            tmp_chunk_begins = []
            while begin_idx < len(chunk_begins) and chunk_begins[
                    begin_idx] < starts[i + 1]:
                tmp_chunk_begins.append(chunk_begins[begin_idx])
                begin_idx += 1
            seq_chunk_begins.append(tmp_chunk_begins)
        # generate chunk ends
        chunk_ends = []
        for i in range(len(seq_chunk_begins)):
            for j in range(len(seq_chunk_begins[i])):
                low = seq_chunk_begins[i][j]
                high = seq_chunk_begins[i][j + 1] if j < len(seq_chunk_begins[
                    i]) - 1 else starts[i + 1]
                chunk_ends.append(np.random.randint(low, high))
        # generate chunks
        for chunk_pos in zip(chunk_begins, chunk_ends):
            chunk_type = np.random.randint(self.num_chunk_types)
88
            chunks.append(Segment(chunk_type, *chunk_pos))
G
guosheng 已提交
89 90 91 92 93 94 95
        return chunks

    def gen_chunks(self, infer, label, starts):
        chunks = self.rand_chunks(starts,
                                  self.num_infer_chunks + self.num_label_chunks
                                  - self.num_correct_chunks)
        correct_chunks = np.random.choice(
96
            list(range(len(chunks))), self.num_correct_chunks, replace=False)
G
guosheng 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
        infer_chunks = np.random.choice(
            [x for x in range(len(chunks)) if x not in correct_chunks],
            self.num_infer_chunks - self.num_correct_chunks,
            replace=False)
        infer_chunks = sorted(correct_chunks.tolist() + infer_chunks.tolist())
        label_chunks = np.random.choice(
            [x for x in range(len(chunks)) if x not in infer_chunks],
            self.num_label_chunks - self.num_correct_chunks,
            replace=False)
        label_chunks = sorted(correct_chunks.tolist() + label_chunks.tolist())
        self.fill_with_chunks(infer, [chunks[idx] for idx in infer_chunks])
        self.fill_with_chunks(label, [chunks[idx] for idx in label_chunks])
        # exclude types in excluded_chunk_types
        if len(self.excluded_chunk_types) > 0:
            for idx in correct_chunks:
                if chunks[idx].chunk_type in self.excluded_chunk_types:
                    self.num_correct_chunks -= 1
            for idx in infer_chunks:
                if chunks[idx].chunk_type in self.excluded_chunk_types:
                    self.num_infer_chunks -= 1
            for idx in label_chunks:
                if chunks[idx].chunk_type in self.excluded_chunk_types:
                    self.num_label_chunks -= 1
        return self.num_correct_chunks, self.num_infer_chunks, self.num_label_chunks

    def set_confs(self):
        # Use the IOB scheme and labels with 2 chunk types
        self.scheme = 'IOB'
        self.num_chunk_types = 2
        self.excluded_chunk_types = []
        self.other_chunk_type = self.num_chunk_types
        self.attrs = {
            'num_chunk_types': self.num_chunk_types,
            'chunk_scheme': self.scheme,
            'excluded_chunk_types': self.excluded_chunk_types
        }
        self.parse_scheme()
        self.num_correct_chunks, self.num_infer_chunks, self.num_label_chunks = 4, 5, 9

    def set_data(self):
Q
Qiao Longfei 已提交
137
        infer = np.zeros((self.batch_size, )).astype('int64')
G
guosheng 已提交
138 139 140
        infer.fill(self.num_chunk_types * self.num_tag_types)
        label = np.copy(infer)
        starts = np.random.choice(
141 142
            list(range(1, self.batch_size)),
            self.num_sequences - 1,
G
guosheng 已提交
143 144 145 146 147
            replace=False).tolist()
        starts.extend([0, self.batch_size])
        starts = sorted(starts)
        self.num_correct_chunks, self.num_infer_chunks, self.num_label_chunks = self.gen_chunks(
            infer, label, starts)
148 149 150 151
        lod = []
        for i in range(len(starts) - 1):
            lod.append(starts[i + 1] - starts[i])
        self.inputs = {'Inference': (infer, [lod]), 'Label': (label, [lod])}
G
guosheng 已提交
152 153 154 155 156 157 158 159
        precision = float(
            self.num_correct_chunks
        ) / self.num_infer_chunks if self.num_infer_chunks else 0
        recall = float(self.num_correct_chunks
                       ) / self.num_label_chunks if self.num_label_chunks else 0
        f1 = float(2 * precision * recall) / (
            precision + recall) if self.num_correct_chunks else 0
        self.outputs = {
160 161 162 163 164
            'Precision': np.asarray(
                [precision], dtype='float32'),
            'Recall': np.asarray(
                [recall], dtype='float32'),
            'F1-Score': np.asarray(
G
guosheng 已提交
165 166 167 168 169 170 171
                [f1], dtype='float32'),
            'NumInferChunks': np.asarray(
                [self.num_infer_chunks], dtype='int64'),
            'NumLabelChunks': np.asarray(
                [self.num_label_chunks], dtype='int64'),
            'NumCorrectChunks': np.asarray(
                [self.num_correct_chunks], dtype='int64')
G
guosheng 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        }

    def setUp(self):
        self.op_type = 'chunk_eval'
        self.set_confs()
        self.set_data()

    def test_check_output(self):
        self.check_output()


class TestChunkEvalOpWithExclude(TestChunkEvalOp):
    def set_confs(self):
        # Use the IOE scheme and labels with 3 chunk types
        self.scheme = 'IOE'
        self.num_chunk_types = 3
        self.excluded_chunk_types = [1]
        self.other_chunk_type = self.num_chunk_types
        self.attrs = {
            'num_chunk_types': self.num_chunk_types,
            'chunk_scheme': self.scheme,
            'excluded_chunk_types': self.excluded_chunk_types
        }
        self.parse_scheme()
        self.num_correct_chunks, self.num_infer_chunks, self.num_label_chunks = 15, 18, 20


if __name__ == '__main__':
    unittest.main()