pool_with_index_op.cc 14.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_with_index_op.h"
16
#include <memory>
C
chengduoZH 已提交
17 18 19 20

namespace paddle {
namespace operators {

Y
Yang Yang 已提交
21
inline int MaxPoolOutputSize(int input_size, int filter_size, int padding,
C
chengduoZH 已提交
22
                             int stride) {
C
chengduoZH 已提交
23 24 25 26 27 28 29 30
  int output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  return output_size;
}

class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
31
  void InferShape(framework::InferShapeContext *ctx) const override {
C
chengduoZH 已提交
32
    PADDLE_ENFORCE(ctx->HasInput("X"),
C
chengduoZH 已提交
33
                   "Input(X) of Pooling should not be null.");
C
chengduoZH 已提交
34
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
C
chengduoZH 已提交
35
                   "Output(Out) of Pooling should not be null.");
C
chengduoZH 已提交
36
    PADDLE_ENFORCE(ctx->HasOutput("Mask"),
C
chengduoZH 已提交
37
                   "Output(Mask) of Pooling should not be null.");
C
chengduoZH 已提交
38 39 40 41 42 43

    auto in_x_dims = ctx->GetInputDim("X");

    std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
    std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
    std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
44
    bool adaptive = ctx->Attrs().Get<bool>("adaptive");
C
chengduoZH 已提交
45 46

    PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
47
                   "Pooling intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
48

C
chengduoZH 已提交
49
    if (ctx->Attrs().Get<bool>("global_pooling")) {
C
chengduoZH 已提交
50
      ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
51 52
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[i] = 0;
C
chengduoZH 已提交
53
        ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
54
      }
C
chengduoZH 已提交
55 56 57
    }

    PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
C
fix doc  
chengduoZH 已提交
58
                   "Input size and pooling size should be consistent.");
C
chengduoZH 已提交
59
    PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
C
chengduoZH 已提交
60
                      "Strides size and pooling size should be the same.");
C
chengduoZH 已提交
61
    PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
C
chengduoZH 已提交
62
                      "Paddings size and pooling size should be the same.");
C
chengduoZH 已提交
63 64

    std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
65 66 67 68 69 70 71
    if (adaptive) {
      output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
    } else {
      for (size_t i = 0; i < ksize.size(); ++i) {
        output_shape.push_back(MaxPoolOutputSize(in_x_dims[i + 2], ksize[i],
                                                 paddings[i], strides[i]));
      }
C
chengduoZH 已提交
72 73 74 75
    }
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
    ctx->SetOutputDim("Mask", framework::make_ddim(output_shape));
  }
C
chengduoZH 已提交
76 77

 protected:
78
  framework::OpKernelType GetExpectedKernelType(
C
chengduoZH 已提交
79
      const framework::ExecutionContext &ctx) const override {
80 81 82
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
C
chengduoZH 已提交
83
  }
C
chengduoZH 已提交
84 85 86 87 88 89
};

class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
fix doc  
chengduoZH 已提交
90
  void InferShape(framework::InferShapeContext *ctx) const override {
91
    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Input(Mask) must not be null.");
C
chengduoZH 已提交
92
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
C
chengduoZH 已提交
93 94
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Input(X@GRAD) should not be null.");
C
chengduoZH 已提交
95 96
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
  }
C
chengduoZH 已提交
97 98

 protected:
99
  framework::OpKernelType GetExpectedKernelType(
C
chengduoZH 已提交
100
      const framework::ExecutionContext &ctx) const override {
101 102 103
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
C
chengduoZH 已提交
104
  }
C
chengduoZH 已提交
105 106 107 108
};

class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
109
  void Make() override {
C
chengduoZH 已提交
110 111
    AddInput(
        "X",
K
kexinzhao 已提交
112 113 114 115
        "(Tensor) The input tensor of pooling operator. "
        "The format of input tensor is NCHW, where N is batch size, C is the "
        "number of channels, H is the height of the image, "
        "and W is the width of the image.");
C
chengduoZH 已提交
116
    AddOutput("Out",
K
kexinzhao 已提交
117 118 119 120 121
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is "
              "the number of channels, H is the height of the image "
              "and W is the width of the image.");
C
chengduoZH 已提交
122
    AddOutput("Mask",
K
kexinzhao 已提交
123 124 125 126 127 128
              "(Tensor) The Mask tensor of pooling operator."
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is the number of channels, "
              "H is the height of the image, "
              "and W is the width of the image. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
129

C
fix bug  
chengduoZH 已提交
130
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
131 132
                              "(vector<int>) The pooling window size(height, "
                              "width) of pooling operator. "
C
chengduoZH 已提交
133
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
134 135
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
136
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
137
    AddAttr<bool>(
C
chengduoZH 已提交
138
        "global_pooling",
C
chengduoZH 已提交
139
        "(bool, default:false) Whether to use the global pooling. "
C
chengduoZH 已提交
140
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
141
        .SetDefault(false);
142 143 144 145 146 147 148 149
    AddAttr<bool>(
        "adaptive",
        "(bool, default False) When true, will perform adaptive pooling "
        "instead, "
        "output shape in H and W dimensions will be same as ksize, input data "
        "will be divided into grids specify by ksize averagely and perform "
        "pooling in each grid area to get output pooling value.")
        .SetDefault(false);
K
kexinzhao 已提交
150 151 152
    AddAttr<std::vector<int>>("strides",
                              "(vector<int>, default {1, 1}), strides(height, "
                              "width) of pooling operator.")
C
chengduoZH 已提交
153
        .SetDefault({1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
154
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
155 156
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
157
        "(vector<int>, default:{0, 0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
158
        "operator. "
C
chengduoZH 已提交
159
        "If global_pooling = true, paddings and will be ignored.")
C
chengduoZH 已提交
160
        .SetDefault({0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
161
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
162 163

    AddComment(R"DOC(
K
kexinzhao 已提交
164 165
MaxPool2d Operator.

C
chengduoZH 已提交
166
The maxPooling2d with index operation calculates the output and the mask
K
kexinzhao 已提交
167 168 169 170
based on the input, ksize, strides, and paddings parameters. Input(X) and
output(Out, Mask) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, 
and W is the width of the feature.
C
chengduoZH 已提交
171 172
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
173 174 175 176
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
177
       X shape: $(N, C, H_{in}, W_{in})$
C
chengduoZH 已提交
178
  Output:
K
kexinzhao 已提交
179 180
       Out shape: $(N, C, H_{out}, W_{out})$
       Mask shape: $(N, C, H_{out}, W_{out})$
C
chengduoZH 已提交
181
  Where
K
kexinzhao 已提交
182
       $$
C
chengduoZH 已提交
183 184
       H_{out} = \frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
185
       $$
186 187 188 189 190 191
  
  For adaptive = true:
       $$
       H_{out} = ksize[0]   W_{out} = ksize[1]
       $$
      
K
kexinzhao 已提交
192

C
chengduoZH 已提交
193 194 195 196 197 198
)DOC");
  }
};

class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
199
  void Make() override {
K
kexinzhao 已提交
200 201 202 203 204 205
    AddInput("X",
             "(Tensor) The input tensor of pooling operator. "
             "The format of input tensor is NCDHW, where N is batch size, C is "
             "the number of channels, and D, H and W are the depth, height and "
             "width of "
             "the image, respectively");
C
chengduoZH 已提交
206
    AddOutput("Out",
K
kexinzhao 已提交
207 208 209 210 211
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, "
              "and D, H and W are the depth, height and "
              "width of the image, respectively.");
C
chengduoZH 已提交
212
    AddOutput("Mask",
K
kexinzhao 已提交
213 214 215 216 217 218
              "(Tensor) The Mask tensor of pooling operator. "
              "The format of output tensor is also NCDHW, "
              "where N is the batch size, C is the number of channels, and "
              "D, H and W are the depth, height and width "
              "of the image, respectively. "
              "It represents the index in the current feature map.");
C
chengduoZH 已提交
219

C
fix bug  
chengduoZH 已提交
220
    AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
221 222
                              "(vector<int>) The pooling window size(depth, "
                              "height, width) of pooling operator. "
C
chengduoZH 已提交
223
                              "If global_pooling = true, ksize and paddings "
C
fix bug  
chengduoZH 已提交
224 225
                              "will be ignored.");  // TODO(Chengduo): Add
                                                    // checker. (Currently,
C
fix doc  
chengduoZH 已提交
226
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
227
    AddAttr<bool>(
C
chengduoZH 已提交
228
        "global_pooling",
K
kexinzhao 已提交
229
        "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
230
        "If global_pooling = true, ksize and paddings will be ignored.")
C
chengduoZH 已提交
231
        .SetDefault(false);
232 233 234 235 236 237 238 239
    AddAttr<bool>(
        "adaptive",
        "(bool, default False) When true, will perform adaptive pooling "
        "instead, "
        "output shape in H and W dimensions will be same as ksize, input data "
        "will be divided into grids specify by ksize averagely and perform "
        "pooling in each grid area to get output pooling value.")
        .SetDefault(false);
C
fix doc  
chengduoZH 已提交
240
    AddAttr<std::vector<int>>("strides",
K
kexinzhao 已提交
241
                              "(vector<int>, default {1,1,1}), strides(depth, "
C
fix doc  
chengduoZH 已提交
242
                              "height, width) of pooling operator.")
C
chengduoZH 已提交
243
        .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
244
    // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
245 246
    AddAttr<std::vector<int>>(
        "paddings",
C
chengduoZH 已提交
247
        "(vector, default {0,0,0}), paddings(depth, "
K
kexinzhao 已提交
248
        "height, width) of pooling operator. "
C
chengduoZH 已提交
249
        "If global_pooling = true, paddings and ksize will be ignored.")
C
chengduoZH 已提交
250
        .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
251
    // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
252

C
chengduoZH 已提交
253
    AddComment(R"DOC(
K
kexinzhao 已提交
254 255
MaxPool3d Operator.

C
chengduoZH 已提交
256 257
The maxpooling3d with index operation calculates the output and the mask
based on the input and ksize, strides, paddings parameters.
K
kexinzhao 已提交
258 259 260 261
Input(X) and output(Out, Mask) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
width of the feature, respectively. 
Parameters(ksize, strides, paddings) are three elements.
C
chengduoZH 已提交
262
These three elements represent depth, height and width, respectively.
C
chengduoZH 已提交
263 264 265 266
The input(X) size and output(Out, Mask) size may be different.

Example:
  Input:
K
kexinzhao 已提交
267
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
268
  Output:
K
kexinzhao 已提交
269 270
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
       Mask shape: $(N, C, D_{out}, H_{out}, W_{out})$
C
chengduoZH 已提交
271
  Where
K
kexinzhao 已提交
272
       $$
C
chengduoZH 已提交
273 274 275
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
K
kexinzhao 已提交
276
       $$
277 278 279 280 281
  
  For adaptive = true:
       $$
       D_{out} = ksize[0]   H_{out} = ksize[1]   W_{out} = ksize[2]
       $$
K
kexinzhao 已提交
282

C
chengduoZH 已提交
283 284 285
)DOC");
  }
};
C
chengduoZH 已提交
286

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
template <typename T>
class MaxPoolWithIndexGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetAttrMap(this->Attrs());
    op->SetInput("X", this->Input("X"));
    op->SetInput("Mask", this->Output("Mask"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    return op;
  }
};

C
chengduoZH 已提交
305 306 307 308 309
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

310 311 312 313
REGISTER_OPERATOR(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
                  ops::MaxPool2dWithIndexOpMaker,
                  ops::MaxPoolWithIndexGradOpMaker<paddle::framework::OpDesc>,
                  ops::MaxPoolWithIndexGradOpMaker<paddle::imperative::OpBase>);
314
REGISTER_OPERATOR(max_pool2d_with_index_grad, ops::MaxPoolWithIndexOpGrad);
C
chengduoZH 已提交
315 316

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
317
    max_pool2d_with_index,
Q
QI JUN 已提交
318 319 320
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, float, int>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, double,
                                int>);
C
chengduoZH 已提交
321
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
322
    max_pool2d_with_index_grad,
Q
QI JUN 已提交
323 324 325
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, float,
                                    int>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, double,
326
                                    int>);
C
chengduoZH 已提交
327

328 329 330 331
REGISTER_OPERATOR(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
                  ops::MaxPool3dWithIndexOpMaker,
                  ops::MaxPoolWithIndexGradOpMaker<paddle::framework::OpDesc>,
                  ops::MaxPoolWithIndexGradOpMaker<paddle::imperative::OpBase>);
332
REGISTER_OPERATOR(max_pool3d_with_index_grad, ops::MaxPoolWithIndexOpGrad);
C
chengduoZH 已提交
333 334

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
335
    max_pool3d_with_index,
Q
QI JUN 已提交
336 337 338
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, float, int>,
    ops::MaxPoolWithIndexKernel<paddle::platform::CPUDeviceContext, double,
                                int>);
C
chengduoZH 已提交
339
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
340
    max_pool3d_with_index_grad,
Q
QI JUN 已提交
341 342 343
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, float,
                                    int>,
    ops::MaxPoolWithIndexGradKernel<paddle::platform::CPUDeviceContext, double,
344
                                    int>);