attrs.py 11.4 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer.config_parser import *
Q
qijun 已提交
16
__all__ = [
X
xzl 已提交
17 18
    'HookAttr', 'ParamAttr', 'ExtraAttr', 'ParameterAttribute',
    'ExtraLayerAttribute'
Q
qijun 已提交
19
]
Z
zhangjinchao01 已提交
20 21


22
def convert_and_compare(x, Type):
W
wangyanfei01 已提交
23 24 25 26 27 28
    """
    Convert x to be the same type as Type and then convert back to
    check whether there is a loss of information
    :param x: object to be checked
    :param Type: target type to check x over

29
    """
Q
qijun 已提交
30 31
    return type(x)(Type(x)) == x

32 33

def is_compatible_with(x, Type):
W
wangyanfei01 已提交
34 35 36 37 38
    """
    Check if x has a type compatible with Type
    :param x: object to be checked
    :param Type: target type to check x over

39 40 41 42 43
    """
    if type(x) == Type:
        return True
    try:
        if float == Type or int == Type:
W
wangyanfei01 已提交
44 45 46
            # avoid those types that can be converted to float/int but not very
            # meaningful and  could potentially lead to error
            # i.e., str and bool typed value should not be used for initializing float/int variable
47 48 49
            if not isinstance(x, str) and not isinstance(x, bool):
                return convert_and_compare(x, Type)
        elif bool == Type:
W
wangyanfei01 已提交
50
            # should not use string type to initialize bool variable
51 52 53 54 55 56 57 58
            if not isinstance(x, str):
                return convert_and_compare(x, Type)
        else:
            return False
    except:
        return False


X
xzl 已提交
59 60
class HookAttribute(object):
    """
W
wangmeng28 已提交
61
    Hook Attribute object. As a member of ParameterAttribute class, the hook is an auxiliary operation that occurs
62 63
    during training process of a layer with parameters, such as img_conv layer, fc layer.

W
wangmeng28 已提交
64
    :param  type: Hook type, currently supported types:
65
                        'pruning' :  user specify a sparsity_ratio before training started, and the
W
wangmeng28 已提交
66
                            network will prune the parameters based on the sparsity_ratio.
67 68 69 70
                            eg: The definition of Hook object can be hk = HookAttribute('pruning', 0.6)
                            The specific usage can be paddle.layer.img_conv(input=img, filter_size=3,
                                                                       num_channels=3, num_filters=64,
                                                                       param_attr=ParameterAttribute(update_hooks=hk) )
Z
zlx 已提交
71
                            The pruning details can be found https://arxiv.org/pdf/1506.02626.pdf
X
xzl 已提交
72 73
    :type type: string

W
wangmeng28 已提交
74
    :param sparsity_ratio: Must be specified if hook type is 'pruning',
75
                        it represents the ratio of the zero elements to be set by the Parameter.
X
xzl 已提交
76
    :type sparsity_ratio: float or None
W
wangmeng28 已提交
77

X
xzl 已提交
78 79
    """

80
    def __init__(self, type, sparsity_ratio=None):
X
xzl 已提交
81 82
        self.type = type
        self.sparsity_ratio = sparsity_ratio
X
xzl 已提交
83 84 85 86
        if self.sparsity_ratio is not None:
            assert is_compatible_with(
                self.sparsity_ratio,
                float), 'sparisity_ratio must be float type'
Z
zlx 已提交
87
            assert self.sparsity_ratio <= 1 and self.sparsity_ratio >= 0, 'sparsity_ratio must be a float between [0, 1] '
X
xzl 已提交
88 89

    def __call__(self):
90
        return ParameterHook(self.type, sparsity_ratio=self.sparsity_ratio)
X
xzl 已提交
91 92


Z
zhangjinchao01 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
class ParameterAttribute(object):
    """
    Parameter Attributes object. To fine-tuning network training process, user
    can set attribute to control training details, such as l1,l2 rate / learning
    rate / how to init param.

    NOTE: IT IS A HIGH LEVEL USER INTERFACE.

    :param is_static: True if this parameter will be fixed while training.
    :type is_static: bool

    :param initial_std: Gauss Random initialization standard deviation.
                        None if not using Gauss Random initialize parameter.
    :type initial_std: float or None
    :param initial_mean:  Gauss Random initialization mean.
                         None if not using Gauss Random initialize parameter.
    :type initial_mean: float or None
    :param initial_max: Uniform initialization max value.
    :type initial_max: float or None
    :param initial_min: Uniform initialization min value.
    :type initial_min: float or None
    :param l1_rate: the l1 regularization factor
    :type l1_rate: float or None
    :param l2_rate: the l2 regularization factor
    :type l2_rate: float or None
    :param learning_rate: The parameter learning rate. None means 1.
                          The learning rate when optimize is LEARNING_RATE =
                          GLOBAL_LEARNING_RATE * PARAMETER_LEARNING_RATE
                          * SCHEDULER_FACTOR.

    :type learning_rate: float or None
    :param momentum: The parameter momentum. None means use global value.
    :type momentum: float or None
W
wangyanfei01 已提交
126 127 128 129
    :param gradient_clipping_threshold: gradient clipping threshold. If gradient
                                        value larger than some value, will be
                                        clipped.
    :type gradient_clipping_threshold: float
Z
zhangjinchao01 已提交
130 131 132
    :param sparse_update: Enable sparse update for this parameter. It will
                          enable both local and remote sparse update.
    :type sparse_update: bool
W
wangmeng28 已提交
133 134
    :param update_hooks: A HookAttribute object.
    :type update_hooks: HookAttribute
X
xuwei06 已提交
135 136 137
    :param initializer: If not None, it should be a callable object which accepts
                        a parameter name and returns numpy array for the initial
                        value of the parameter
W
wangmeng28 已提交
138
    :type initializer: callable object
Z
zhangjinchao01 已提交
139 140
    """

Q
qijun 已提交
141 142 143 144 145 146 147 148 149 150 151
    def __init__(self,
                 name=None,
                 is_static=False,
                 initial_std=None,
                 initial_mean=None,
                 initial_max=None,
                 initial_min=None,
                 l1_rate=None,
                 l2_rate=None,
                 learning_rate=None,
                 momentum=None,
W
wangyanfei01 已提交
152
                 gradient_clipping_threshold=None,
X
xzl 已提交
153
                 sparse_update=False,
Z
zlx 已提交
154
                 update_hooks=None,
X
xuwei06 已提交
155
                 initializer=None):
156 157
        self.attr = {}

Z
zhangjinchao01 已提交
158
        if is_static:
159 160 161
            self.attr['is_static'] = True

        if initial_std is None and initial_mean is None and initial_max \
Z
zhangjinchao01 已提交
162
                is None and initial_min is None:
163
            self.attr['initial_smart'] = True
164 165
        elif is_compatible_with(initial_std, float) or \
             is_compatible_with(initial_mean, float):
Z
zhangjinchao01 已提交
166 167 168 169 170
            if initial_std is not None:
                self.attr['initial_std'] = initial_std
            if initial_mean is not None:
                self.attr['initial_mean'] = initial_mean
            self.attr['initial_strategy'] = 0  # Gauss Random
171 172 173 174
        elif is_compatible_with(initial_max, float) and \
             is_compatible_with(initial_min, float):
            initial_max = initial_max
            initial_min = initial_min
Z
zhangjinchao01 已提交
175 176 177 178 179 180 181 182 183
            assert initial_min < initial_max
            initial_mean = (initial_max + initial_min) / 2
            initial_std = initial_mean - initial_min
            self.attr['initial_mean'] = initial_mean
            self.attr['initial_std'] = initial_std
            self.attr['initial_strategy'] = 1  # Uniform Random
        else:
            raise RuntimeError("Unexpected branch.")

184
        if not is_static and is_compatible_with(l1_rate, float):
Z
zhangjinchao01 已提交
185 186
            self.attr['decay_rate_l1'] = l1_rate

187
        if not is_static and is_compatible_with(l2_rate, float):
Z
zhangjinchao01 已提交
188 189
            self.attr['decay_rate'] = l2_rate

190
        if not is_static and is_compatible_with(learning_rate, float):
Z
zhangjinchao01 已提交
191 192
            self.attr['learning_rate'] = learning_rate

193
        if not is_static and is_compatible_with(momentum, float):
Z
zhangjinchao01 已提交
194 195 196 197 198 199 200 201 202
            self.attr['momentum'] = momentum

        if name is not None:
            self.attr['parameter_name'] = name

        if sparse_update:
            self.attr['sparse_update'] = True
            self.attr['sparse_remote_update'] = True

W
wangyanfei01 已提交
203 204 205 206
        if gradient_clipping_threshold is not None and \
                is_compatible_with(gradient_clipping_threshold, float):
            self.attr['gradient_clipping_threshold'] = \
                gradient_clipping_threshold
X
xuwei06 已提交
207 208
        if initializer is not None:
            self.attr['initializer'] = initializer
W
wangyanfei01 已提交
209

X
xzl 已提交
210 211 212
        if update_hooks:
            self.attr['update_hooks'] = update_hooks

Z
zhangjinchao01 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    def set_default_parameter_name(self, name):
        """
        Set default parameter name. If parameter not set, then will use default
        parameter name.


        :param name: default parameter name.
        :type name: basestring
        """
        if 'parameter_name' not in self.attr:
            self.attr['parameter_name'] = name

    @staticmethod
    def to_bias(bias_attr):
        if isinstance(bias_attr, ParameterAttribute):
            return Bias(**bias_attr.attr)
        else:
            return False


class ExtraLayerAttribute(object):
    """
    Some high level layer attributes config. You can set all attributes here,
    but some layer doesn't support all attributes. If you set an attribute to a
    layer that not support this attribute, paddle will print an error and core.

    :param error_clipping_threshold: Error clipping threshold.
    :type error_clipping_threshold: float
    :param drop_rate: Dropout rate. Dropout will create a mask on layer output.
                      The dropout rate is the zero rate of this mask. The
                      details of what dropout is please refer to `here
                      <https://www.cs.toronto.edu/~hinton/absps/
245
                      JMLRdropout.pdf>`_.
Z
zhangjinchao01 已提交
246
    :type drop_rate: float
P
Peng Li 已提交
247
    :param device: device ID of layer. device=-1, use CPU. device>=0, use GPU.
248 249 250 251
                   The details allocation in parallel_nn please refer to `here
                   <http://www.paddlepaddle.org/doc/ui/cmd_argument/
                   use_case.html#case-2-specify-layers-in-different-devices>`_.
    :type device: int
Z
zhangjinchao01 已提交
252 253
    """

Q
qijun 已提交
254 255 256 257
    def __init__(self,
                 error_clipping_threshold=None,
                 drop_rate=None,
                 device=None):
Z
zhangjinchao01 已提交
258
        self.attr = dict()
Y
Yu Yang 已提交
259 260 261 262 263 264 265 266 267
        if error_clipping_threshold is not None:
            error_clipping_threshold = float(error_clipping_threshold)
            if error_clipping_threshold < 0:
                raise ValueError("Error clipping must > 0")
            self.attr['error_clipping_threshold'] = error_clipping_threshold
        if drop_rate is not None:
            drop_rate = float(drop_rate)
            if drop_rate < 0:
                raise ValueError("Dropout rate must > 0")
Z
zhangjinchao01 已提交
268 269
            self.attr["drop_rate"] = drop_rate

270 271 272
        if isinstance(device, int):
            self.attr["device"] = device

Z
zhangjinchao01 已提交
273 274 275 276
    def check(self, layer_name):
        for key in self.attr:
            if not hasattr(self, 'can_%s' % key) or \
                    not getattr(self, 'can_%s' % key):
277
                raise NotImplementedError("Layer %s does not support %s" %
Q
qijun 已提交
278
                                          (layer_name, key))
Z
zhangjinchao01 已提交
279 280 281 282 283 284 285 286 287

    @staticmethod
    def to_kwargs(attr):
        if attr is None:
            return dict()
        else:
            return attr.attr


X
xzl 已提交
288
HookAttr = HookAttribute
Z
zhangjinchao01 已提交
289 290
ParamAttr = ParameterAttribute
ExtraAttr = ExtraLayerAttribute