test.cc 5.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <cstring>  // for memcpy
#include <random>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
T
tensor-tang 已提交
22
#include "paddle/fluid/operators/jit/kernels.h"
T
tensor-tang 已提交
23
#include "paddle/fluid/platform/place.h"
T
tensor-tang 已提交
24 25 26 27 28 29 30 31 32 33
#include "paddle/fluid/platform/port.h"

constexpr int repeat = 20000;

inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

T
tensor-tang 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

template <typename T>
void ExpectEQ(const T* target, const T* refer, int n) {
  if (std::is_floating_point<T>::value) {
    for (int i = 0; i < n; ++i) {
      EXPECT_NEAR(target[i], refer[i], 1e-3);
    }
  } else {
    for (int i = 0; i < n; ++i) {
      EXPECT_EQ(target[i], refer[i]);
    }
  }
}

T
tensor-tang 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
std::vector<int> TestSizes() {
  std::vector<int> s;
  for (int i = 1; i < 30; ++i) {
    s.push_back(i);
  }
  // test some large size
  s.push_back(100);
  s.push_back(1000);
  return s;
}

template <typename T, typename Func>
void TestTartgetFunc(const Func tgt, const std::vector<T>& x,
                     const std::vector<T>& y, const std::vector<T>& zref) {
  EXPECT_TRUE(tgt != nullptr);
  EXPECT_EQ(zref.size(), x.size());
  EXPECT_EQ(zref.size(), y.size());
  const T* x_data = x.data();
  const T* y_data = y.data();
  const T* zref_data = zref.data();
  const int d = zref.size();

  std::vector<T> ztgt(d);
  T* ztgt_data = ztgt.data();
  // test normal
  tgt(x_data, y_data, ztgt_data, d);
  ExpectEQ<T>(ztgt_data, zref_data, d);
  // test inplace x
  std::copy(x.begin(), x.end(), ztgt.begin());
  tgt(ztgt_data, y_data, ztgt_data, d);
  ExpectEQ<T>(ztgt_data, zref_data, d);
  // test inplace y
  std::copy(y.begin(), y.end(), ztgt.begin());
  tgt(x_data, ztgt_data, ztgt_data, d);
  ExpectEQ<T>(ztgt_data, zref_data, d);
}

T
tensor-tang 已提交
95 96 97
TEST(JitKernel, vmul) {
  using T = float;
  using PlaceType = paddle::platform::CPUPlace;
T
tensor-tang 已提交
98
  namespace jit = paddle::operators::jit;
T
tensor-tang 已提交
99 100 101
  const auto KT = jit::vmul;
  for (int d : TestSizes()) {
    auto ref = jit::GetRefer<KT, T, jit::VMulTuples<T>::func_type,
T
tensor-tang 已提交
102
                             jit::VMulTuples<T>::attr_type>();
T
tensor-tang 已提交
103 104
    EXPECT_TRUE(ref != nullptr);

T
tensor-tang 已提交
105
    std::vector<T> x(d), y(d), zref(d);
T
tensor-tang 已提交
106 107 108
    RandomVec<T>(d, x.data());
    RandomVec<T>(d, y.data());

T
tensor-tang 已提交
109 110 111 112 113 114 115 116 117 118 119
    std::vector<T> xinp(d), yinp(d);  // inplace test
    std::copy(x.begin(), x.end(), xinp.begin());
    std::copy(y.begin(), y.end(), yinp.begin());

    const T* x_data = x.data();
    const T* y_data = y.data();
    T* zref_data = zref.data();
    T* xinp_data = xinp.data();
    T* yinp_data = yinp.data();

    // test refer code inplace
T
tensor-tang 已提交
120
    ref(x_data, y_data, zref_data, d);
T
tensor-tang 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    ref(x_data, yinp_data, yinp_data, d);
    ref(xinp_data, y_data, xinp_data, d);
    ExpectEQ<T>(xinp_data, zref_data, d);
    ExpectEQ<T>(yinp_data, zref_data, d);

    // test jitcode
    auto jitcode = jit::GetJitCode<KT, T, jit::VMulTuples<T>::func_type,
                                   jit::VMulTuples<T>::attr_type, PlaceType>(d);
    if (jitcode) {
      VLOG(10) << "Test jitcode, size: " << d;
      TestTartgetFunc<T, jit::VMulTuples<T>::func_type>(jitcode, x, y, zref);
    }

    // test all impls in more
    jit::KernelKey kkey(KT, PlaceType());
    auto& pool = jit::KernelPool().Instance().AllKernels();
    auto iter = pool.find(kkey);
    if (iter != pool.end()) {
      auto& impls = iter->second;
      for (auto& impl : impls) {
        auto i =
            dynamic_cast<const jit::KernelImpl<T, jit::VMulTuples<T>::func_type,
                                               jit::VMulTuples<T>::attr_type>*>(
                impl.get());
        if (i && i->UseMe(d)) {
          auto more = i->GetFunc();
          VLOG(10) << "Test More Kernel, size: " << d;
          TestTartgetFunc<T, jit::VMulTuples<T>::func_type>(more, x, y, zref);
        }
      }
    }
    // Test result from Get function
    VLOG(10) << "Test Get function, size: " << d;
    auto tgt = jit::Get<KT, T, jit::VMulTuples<T>::func_type,
                        jit::VMulTuples<T>::attr_type, PlaceType>(d);
    TestTartgetFunc<T, jit::VMulTuples<T>::func_type>(tgt, x, y, zref);
T
tensor-tang 已提交
157 158
  }
}
T
tensor-tang 已提交
159 160

TEST(JitKernel, pool) {}