test_dist_base.py 39.9 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17 18 19 20 21 22
import time

import unittest
import os
import sys
import signal
import subprocess
23
import six
W
Wu Yi 已提交
24
import argparse
W
Wu Yi 已提交
25
import pickle
26
import random
W
Wu Yi 已提交
27
import numpy as np
28
import time
29 30

import paddle
31
import paddle.fluid as fluid
32
from paddle.fluid import compiler
33 34 35
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
36

37 38 39
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
40
RUN_STEP = 5
41
DEFAULT_BATCH_SIZE = 2
42
DIST_UT_PORT = 0
43

T
typhoonzero 已提交
44

45 46 47 48 49 50 51 52
def print_to_out(out_losses):
    if six.PY2:
        print(pickle.dumps(out_losses))
    else:
        sys.stdout.buffer.write(pickle.dumps(out_losses))


def print_to_err(class_name, log_str):
53 54
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
G
guru4elephant 已提交
55
    if six.PY2:
56
        sys.stderr.write(pickle.dumps(print_str))
G
guru4elephant 已提交
57
    else:
58
        sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
59 60


61 62 63 64
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
65
class TestDistRunnerBase(object):
W
Wu Yi 已提交
66 67 68
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
69 70
                  single_device=False,
                  use_dgc=False):
T
typhoonzero 已提交
71 72 73
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

74
    @staticmethod
W
Wu Yi 已提交
75 76 77 78 79
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
80
                       dc_asgd=False,
81
                       current_endpoint=None,
T
tangwei12 已提交
82 83
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
84
        # NOTE: import fluid until runtime, or else forking processes will cause error.
85
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
86
        config.enable_dc_asgd = dc_asgd
87
        config.sync_mode = sync_mode
T
tangwei12 已提交
88 89
        config.runtime_split_send_recv = hogwild_mode

90 91
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
92
        # config.runtime_split_send_recv = True
93
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
94 95 96 97
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
98
            trainers=trainers,
T
tangwei12 已提交
99
            sync_mode=sync_mode,
100
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
101 102
        return t

W
Wu Yi 已提交
103
    def run_pserver(self, args):
W
Wu Yi 已提交
104
        self.lr = args.lr
105
        self.get_model(batch_size=args.batch_size)
106
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
107 108 109 110 111 112 113 114 115

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
116 117 118
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
119

T
typhoonzero 已提交
120 121 122
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
123
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
124
        exe.run(pserver_prog)
125
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
126

127 128 129 130 131 132 133 134 135 136
    def run_gpu_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2"

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
137
        dist_strategy.fuse_memory_size = 1  # MB
138
        dist_strategy.fuse_laryer_size = 1
139 140 141 142
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
143 144
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
145 146 147

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
148
        print_to_err("gpu_fleet", "fleet.node_num:")
T
tangwei12 已提交
149 150
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
151 152

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
153
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

170 171 172 173 174 175 176
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

177 178 179 180 181 182 183 184 185 186 187 188 189 190
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

191
        print_to_err(type(self).__name__, "begin to train on trainer")
192 193 194 195 196 197
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
198 199
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
200 201 202 203 204 205

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

236
    def run_trainer(self, args):
W
Wu Yi 已提交
237
        self.lr = args.lr
W
Wu Yi 已提交
238 239 240
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
241 242 243
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
244 245 246
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
247

W
Wu Yi 已提交
248
        if args.update_method == "pserver":
249
            print_to_err(
250 251
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
252 253 254 255 256 257 258 259 260
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
261
            trainer_prog = t.get_trainer_program()
262
            print_to_err(
263 264
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
265
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
266 267 268
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
269
            config.nccl_comm_num = args.nccl_comm_num
270 271 272
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
273
            print_to_err(
274 275
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
276 277 278 279 280 281 282
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
283
            print_to_err(
284 285
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
286
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
287
        else:
288
            print_to_err(
289 290
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
291
            trainer_prog = fluid.default_main_program()
292
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
293

294 295 296
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

297
        if args.use_cuda:
298 299
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
300 301 302
        else:
            place = fluid.CPUPlace()

303 304
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
305
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
306

W
Wu Yi 已提交
307 308
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
309

W
Wu Yi 已提交
310
        build_stra = fluid.BuildStrategy()
311 312 313
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
314

T
tangwei12 已提交
315 316 317
        if args.hogwild:
            build_stra.async_mode = True

318 319 320
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
321 322 323 324 325
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
326
        pass_builder = None
X
Xin Pan 已提交
327
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
328
            pass_builder = build_stra._finalize_strategy_and_create_passes()
329
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
330
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
331

W
Wu Yi 已提交
332
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
333 334
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
335
        else:
W
Wu Yi 已提交
336
            # case args.update_method == "nccl2_reduce_layer":
337 338
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
339

340
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
341
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
342
            loss_name=avg_cost.name,
W
Wu Yi 已提交
343
            build_strategy=build_stra,
W
Wu Yi 已提交
344
            exec_strategy=exec_strategy)
345
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
346 347 348 349 350 351 352

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
353
        reader_generator = train_reader()
T
typhoonzero 已提交
354

355 356
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
357
            if args.update_method != "local" and args.use_reader_alloc:
358 359 360 361 362 363 364
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
365

366
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
367
        out_losses = []
368
        for i in six.moves.xrange(RUN_STEP):
369 370
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
371
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
372
            out_losses.append(loss[0])
373 374
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
375

376
        print_to_out(out_losses)
T
typhoonzero 已提交
377 378


379 380 381 382 383 384 385 386 387
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

388 389 390 391 392 393 394 395 396 397
    def _get_data(self, batch, args):
        if args.update_method != "local":
            new_batch = []
            for offset, item in enumerate(batch):
                if offset % 2 == args.trainer_id:
                    new_batch.append(item)
            return new_batch
        else:
            return batch

398
    def run_trainer(self, args):
Y
Yan Xu 已提交
399

400 401 402 403 404 405 406
        seed = 90
        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = fluid.CUDAPlace(device_id)

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
407 408 409
            np.random.seed(seed)
            import random
            random.seed = seed
410 411
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
412

413 414 415 416 417 418
            if args.update_method == "nccl2":
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
419
                print_to_err(
420 421
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
422
                dygraph.parallel.prepare_context(strategy)
Y
Yan Xu 已提交
423
                model = dygraph.parallel.DataParallel(model, strategy)
424
                print_to_err(type(self).__name__, "model built in dygraph")
425
            out_losses = []
426
            print_to_err(type(self).__name__, "begin to run dygraph training")
427
            for step_id, data in enumerate(train_reader()):
428
                data = self._get_data(data, args)
429 430 431
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
432
                if step_id % 10 == 0:
433
                    print_to_err(
434
                        type(self).__name__,
435
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
436
                out_losses.append(loss.numpy())
437 438 439 440 441

                loss.backward()

                opt.minimize(loss)
                model.clear_gradients()
442
        print_to_out(out_losses)
443

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
        random.seed = seed
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
        if args.update_method == "nccl2":
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
        if args.update_method == "nccl2":
            model = paddle.DataParallel(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
    def run_gpu_fleet_api_trainer(self, args):
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
        random.seed = seed
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
        if args.update_method == "nccl2":
            fleet.init(is_collective=True)

        # 4. train model
        model, train_reader, opt = self.get_model()
        if args.update_method == "nccl2":
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
            opt.clear_grad()
        print_to_out(out_losses)

519

T
typhoonzero 已提交
520
def runtime_main(test_class):
W
Wu Yi 已提交
521 522 523 524
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
525 526 527 528
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
W
Wu Yi 已提交
529
        choices=["pserver", "nccl2", "local", "nccl2_reduce_layer"])
W
Wu Yi 已提交
530 531
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
532
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
533 534
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
535
    parser.add_argument('--gpu_fleet_api', action='store_true')
536 537
    parser.add_argument('--use_local_sgd', action='store_true')
    parser.add_argument('--ut4grad_allreduce', action='store_true')
538
    parser.add_argument(
539
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
540 541 542
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
543
    parser.add_argument('--use_cuda', action='store_true')
544
    parser.add_argument('--use_dgc', action='store_true')
W
Wu Yi 已提交
545
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
546
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
547
    parser.add_argument('--hogwild', action='store_true')
548
    parser.add_argument('--save_model', action='store_true')
549
    parser.add_argument(
W
Wu Yi 已提交
550
        '--use_reader_alloc', action='store_true', required=False)
551
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
552
    parser.add_argument('--lr', required=False, type=float, default=0.001)
553 554
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
555 556 557 558 559
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
560
    parser.add_argument('--sync_batch_norm', action='store_true')
W
Wu Yi 已提交
561 562

    args = parser.parse_args()
T
typhoonzero 已提交
563 564

    model = test_class()
W
Wu Yi 已提交
565
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
566
        model.run_pserver(args)
567 568
    elif args.gpu_fleet_api:
        model.run_gpu_fleet_api_trainer(args)
T
typhoonzero 已提交
569
    else:
570
        model.run_trainer(args)
X
Xin Pan 已提交
571

M
minqiyang 已提交
572

M
minqiyang 已提交
573
import paddle.compat as cpt
Y
Yancey1989 已提交
574 575
import socket
from contextlib import closing
M
minqiyang 已提交
576

X
Xin Pan 已提交
577 578

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
579 580 581
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

582 583 584
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
585
            self._use_dgc = False
586 587 588 589 590 591 592
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
593 594 595 596
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
597

X
Xin Pan 已提交
598 599 600
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
601
        self._port_set = set()
M
minqiyang 已提交
602
        self._python_interp = sys.executable
W
Wu Yi 已提交
603
        self._sync_mode = True
T
tangwei12 已提交
604
        self._hogwild_mode = False
605
        self._enforce_place = None
W
Wu Yi 已提交
606
        self._use_reduce = False
W
Wu Yi 已提交
607
        self._dc_asgd = False  # must use with async mode
608
        self._use_reader_alloc = True
W
Wu Yi 已提交
609
        self._nccl2_mode = False
610
        self._mp_mode = False
W
Wu Yi 已提交
611 612 613 614 615
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
616
        self._lr = 0.001
617
        self._use_dgc = False
618
        self._dygraph = False
619
        self._nccl_comm_num = 1
620
        self._enable_backward_deps = False
621
        self._gpu_fleet_api = False
622 623
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
624
        self._use_hallreduce = False
625
        self._save_model = False
W
Wu Yi 已提交
626
        self._setup_config()
627 628 629 630 631 632 633 634 635 636 637 638 639 640

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2

641
        self._after_setup_config()
X
Xin Pan 已提交
642

Y
Yancey1989 已提交
643
    def _find_free_port(self):
Y
Yancey1989 已提交
644 645 646 647
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
648
                print_to_err(
649
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
650 651 652 653 654 655 656
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
657

658 659 660 661 662
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
663
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
664 665 666 667 668 669 670 671
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
672
        ps0_cmd = ps_cmd % \
673 674
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
675
        ps1_cmd = ps_cmd % \
676 677
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
678 679 680 681

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
682

683 684
        print(ps0_cmd)
        print(ps1_cmd)
685 686
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
687

688
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
689
        ps0_proc = subprocess.Popen(
690 691 692 693
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
694
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
695
        ps1_proc = subprocess.Popen(
696 697 698 699
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
700

701
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
702

703 704 705 706 707
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
708
                   batch_merge_repeat=1,
709 710
                   log_name="",
                   gpus="0"):
G
gongweibao 已提交
711

712 713 714 715 716 717
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

718 719
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
720

721 722 723 724
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
725 726
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
727

728
        if self.__use_cuda:
729
            cmd += " --use_cuda"
W
Wu Yi 已提交
730
            env_local = {
731
                "CUDA_VISIBLE_DEVICES": gpus,
W
Wu Yi 已提交
732 733 734
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
735 736 737
        else:
            env_local = {'CPU_NUM': '1'}

738 739 740 741
        # not use dgc in single card
        if len(gpus) > 1 and self._use_dgc:
            cmd += " --use_dgc"

W
Wu Yi 已提交
742 743
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
744

745
        if check_error_log:
746
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
747
            local_proc = subprocess.Popen(
748
                cmd.split(" "),
G
gongweibao 已提交
749
                stdout=subprocess.PIPE,
750
                stderr=err_log,
W
Wu Yi 已提交
751
                env=env_local)
G
gongweibao 已提交
752 753
        else:
            local_proc = subprocess.Popen(
754
                cmd.split(" "),
G
gongweibao 已提交
755
                stdout=subprocess.PIPE,
756
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
757
                env=env_local)
G
gongweibao 已提交
758

759 760 761 762 763 764
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
765
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
766

W
Wu Yi 已提交
767
        return pickle.loads(local_out)
768

769
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
770
        # Run dist train to compare with local results
771 772
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
773

X
Xin Pan 已提交
774
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
775

776 777 778 779 780 781 782 783
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
784
        tr0_cmd = tr_cmd % \
785
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
786
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
787
        tr1_cmd = tr_cmd % \
788
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
789
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
790 791 792 793

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
794 795 796
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
797 798 799
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
800 801 802
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
803
        if self.__use_cuda:
804 805 806 807 808 809 810 811 812 813
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
814

W
Wu Yi 已提交
815 816
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
817 818
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
819

820
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
821
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
822
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
823
            stdout=subprocess.PIPE,
G
gongweibao 已提交
824
            stderr=tr0_pipe,
X
Xin Pan 已提交
825
            env=env0)
826
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
827
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
828
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
829
            stdout=subprocess.PIPE,
G
gongweibao 已提交
830
            stderr=tr1_pipe,
X
Xin Pan 已提交
831 832
            env=env1)

833 834 835 836 837 838 839 840 841 842 843 844
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

845 846
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
847

G
gongweibao 已提交
848
        # close trainer file
849 850 851 852
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
853

W
Wu Yi 已提交
854 855
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
856

W
Wu Yi 已提交
857 858
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

859 860 861
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
862 863 864 865 866 867 868
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

869
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
870 871
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
872 873

        if self._use_reduce:
874
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
875
        if self._use_reader_alloc:
876
            tr_cmd += " --use_reader_alloc"
877 878
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
879
        if self.__use_cuda:
880 881
            tr_cmd += " --use_cuda"
            env.update({
882
                "FLAGS_selected_gpus": "{}".format(0),
883
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id % 2),
884
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
885 886 887
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
888
            })
W
Wu Yi 已提交
889
        else:
890
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
891

892
        if self._use_dgc:
893 894 895
            tr_cmd += " --use_dgc"

        if self._mp_mode:
896
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id % 2)}
897 898

        if self._nccl_comm_num > 1:
899
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
900

901 902
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
903

904
        if self._enable_backward_deps:
905
            tr_cmd += " --enable_backward_deps"
906

907 908
        if self._gpu_fleet_api:
            tr_cmd += " --gpu_fleet_api"
909 910 911 912
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
913 914
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
915

916 917 918
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

919
        return tr_cmd, env
W
Wu Yi 已提交
920

921
    def _run_cluster_nccl2(self, model, envs, nccl2_reduce_layer,
922
                           check_error_log, log_name):
923 924
        if self._use_hallreduce:
            self._ps_endpoints = ""
925 926 927 928 929 930 931 932 933 934

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
935
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
936

937 938 939 940 941 942
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        if nccl2_reduce_layer:
            update_method = "nccl2_reduce_layer"
        else:
            update_method = "nccl2"
W
Wu Yi 已提交
943

944
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
945

946 947 948 949 950 951 952 953
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
954

955
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
956

957
            print_to_err(
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

976 977 978
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
979
        return pickle.loads(outs[0]), pickle.loads(outs[1])
980

981
    def _get_required_envs(self, check_error_log=False, need_envs={}):
982 983 984 985 986 987
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
988
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
989
            "FLAGS_rpc_retry_bind_port": "50",
990
            "FLAGS_cudnn_deterministic": "1",
991
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
992
            "http_proxy": "",
993 994
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
995 996 997
        }

        if check_error_log:
998
            required_envs["GLOG_vmodule"] = \
999 1000
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
1001
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,nccl_helper=10,grpc_client=10,grpc_server=10,request_handler_impl=10"
1002 1003
            required_envs["GLOG_logtostderr"] = "1"

1004 1005 1006 1007 1008 1009 1010 1011 1012
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1013

1014 1015
        required_envs = self._get_required_envs(check_error_log, need_envs)

T
tangwei12 已提交
1016
        local_losses \
1017
            = self._run_local(model_file, required_envs,
1018 1019
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1020
        if self._nccl2_mode:
W
Wu Yi 已提交
1021 1022
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1023 1024 1025 1026 1027
                    model_file,
                    required_envs,
                    True,
                    check_error_log,
                    log_name=log_name)
W
Wu Yi 已提交
1028 1029
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1030 1031 1032 1033 1034
                    model_file,
                    required_envs,
                    False,
                    check_error_log,
                    log_name=log_name)
W
Wu Yi 已提交
1035 1036
        else:
            tr0_losses, tr1_losses = self._run_cluster(
1037
                model_file, required_envs, check_error_log, log_name=log_name)
1038 1039

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1040 1041 1042
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
Y
Yan Xu 已提交
1043
            dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1044 1045
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1046 1047 1048 1049 1050 1051 1052

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1053

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
                gpus="0,1")

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
                gpus="0,1")

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)