distribute_transpiler.py 54.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26
"""
Transpile the program to distributed data-parallelism programs.
The main_program will be transformed to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
into a parameter server program.

Use different methods to split trainable variables to different
parameter servers.

Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
27 28 29
4. append send_op to send splited variables to server and 
5. add recv_op to fetch params(splited blocks or origin param) from server.
6. append concat_op to merge splited blocks to update local weights.
30 31 32 33 34 35 36 37

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
38

T
typhoonzero 已提交
39
from __future__ import print_function
40

T
typhoonzero 已提交
41
import math
42
import numpy as np
43

Y
Yancey1989 已提交
44
from ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
45
from .. import core, framework
T
typhoonzero 已提交
46 47 48
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
49
from details import *
50 51 52

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
53
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
54 55 56
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
57 58


T
typhoonzero 已提交
59 60 61 62 63 64
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
65

T
typhoonzero 已提交
66 67
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
68 69


70 71 72 73
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


74
def slice_variable(var_list, slice_count, min_block_size=8192):
T
typhoonzero 已提交
75
    """
76 77 78 79 80 81
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
82
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit).
83 84 85

    Args:
        var_list (list): List of variables.
86 87
        slice_count (int): Numel of count that variables will be sliced, which
            could be the pserver services' count.
88 89
        min_block_size (int): Minimum splitted block size.
    Returns:
90
        blocks (list[(varname, block_id, current_block_size)]): A list
91
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
92 93 94
    """
    blocks = []
    for var in var_list:
95
        split_count = slice_count
T
typhoonzero 已提交
96 97 98 99
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
100
        if max_pserver_count < slice_count:
T
typhoonzero 已提交
101 102 103 104 105 106 107 108 109
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
110
        # update split_count after aligning
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
120
class DistributeTranspiler:
121
    def _has_distributed_lookup_table(self):
122 123 124 125 126 127
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
128
        for op in self.origin_program.global_block().ops:
129 130 131 132 133 134 135 136 137 138 139 140
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

141
        return len(distributed_lookup_table_ops) > 0
142

143 144 145 146 147
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
148 149 150 151 152 153
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
154
                if grad.name != grad_var_name(self.table_name)
155 156 157 158 159 160
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
161
            if self.sync_mode:
162
                self.trainer_side_table_grad_list = [
163 164
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
165
                        (table_grad_var.name, self.trainer_id, index),
166 167 168 169 170 171
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
172
                self.trainer_side_table_grad_list = [
173 174 175 176 177 178 179
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
Q
qiaolongfei 已提交
180
        return param_list, grad_list
181

182
    def _init_splited_vars(self, slice_var_up):
183 184 185 186 187 188 189 190
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
Y
yi.wu 已提交
191
        param_grad_set = set()
192 193 194 195
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
Y
yi.wu 已提交
196 197 198 199 200 201
            if p.name not in param_grad_set:
                param_list.append(p)
                param_grad_set.add(p.name)
            if g.name not in param_grad_set:
                grad_list.append(g)
                param_grad_set.add(g.name)
202

Q
qiaolongfei 已提交
203 204
        param_list, grad_list = self._update_dist_lookup_table_vars(
            param_list, grad_list, self.params_grads)
205

206 207 208 209 210
        if slice_var_up:
            # when we slice var up into blocks, we will slice the var according to
            # pserver services' count. A pserver may have two or more listening ports.
            grad_blocks = slice_variable(grad_list, len(self.pserver_endpoints))
            param_blocks = slice_variable(param_list,
211
                                          len(self.pserver_endpoints))
212
        else:
213
            # when we do NOT slice var up into blocks, we will always slice params
214
            # grads into one block.
215 216
            grad_blocks = slice_variable(grad_list, 1)
            param_blocks = slice_variable(param_list, 1)
Y
update  
Yancey1989 已提交
217
        assert (len(grad_blocks) == len(param_blocks))
218

219 220 221 222 223 224 225 226
        # origin_varname -> [splited_var]
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
        self.grad_param_mapping = dict()
Y
update  
Yancey1989 已提交
227 228 229
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
230 231
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
                    self.param_var_mapping[p_name][int(p_bid)]
232

233
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
234
        self.param_grad_ep_mapping = dict()
Y
Yancey1989 已提交
235 236 237 238 239 240 241 242 243
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

244 245 246 247 248
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
249
                  slice_var_up=True,
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
                  split_method=RoundRobin,
                  sync_mode=True):
        """
        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
        """
        assert (split_method.__bases__[0] == PSDispatcher)
        if program is None:
            program = default_main_program()
        self.origin_program = program
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

        ps_dispatcher = split_method(self.pserver_endpoints)
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()

        # split and create vars, then put splited vars in dicts for later use.
283
        self._init_splited_vars(slice_var_up)
284

Y
Yancey1989 已提交
285 286
        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
287
        send_vars = []
288 289 290 291 292 293

        # in general cases, the number of pservers is times of 2, and this
        # will lead to uneven distribution among weights and bias:
        #       fc_w@GRAD_trainer_0, fc_w@GRAD_trainer_1 --> pserver1
        #       fc_b@GRAD_trainer_0, fc_b@GRAD_trainer_1 --> pserver2
        # shuffle the map will avoid the uneven distribution above
294
        grad_var_mapping_items = self.grad_var_mapping.items()
295
        if not slice_var_up:
296 297 298
            np.random.shuffle(grad_var_mapping_items)

        for orig_varname, splited_vars in grad_var_mapping_items:
Y
update  
Yancey1989 已提交
299
            eplist = ps_dispatcher.dispatch(splited_vars)
300

301
            if not slice_var_up:
302 303
                assert (len(splited_vars) == 1)

Y
Yancey1989 已提交
304 305 306 307 308 309 310 311 312
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
313
                index += 1
Y
Yancey1989 已提交
314 315 316 317
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

Y
Yancey1989 已提交
318
            program.global_block().insert_op(
Y
update  
Yancey1989 已提交
319
                index=index + 1,
320
                type="send",
Y
update  
Yancey1989 已提交
321
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
322 323 324 325 326
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
327 328
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
329 330 331 332 333

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
334
                outputs={},
Y
Yancey1989 已提交
335 336
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
337 338
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
339
                })
Y
Yancey1989 已提交
340 341 342

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
343
        for _, var in enumerate(send_vars):
344
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
345
        ps_dispatcher.reset()
Y
Yancey1989 已提交
346 347
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
348
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
349 350
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
351

Y
Yancey1989 已提交
352
        # step4: Concat the parameters splits together after recv.
353
        for varname, splited_var in self.param_var_mapping.iteritems():
Y
Yancey1989 已提交
354 355 356 357 358 359 360 361
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
362 363 364 365 366
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
367

T
typhoonzero 已提交
368
        program.global_block().append_op(
Y
Yancey1989 已提交
369 370
            type="fetch_barrier",
            inputs={},
Y
Yancey1989 已提交
371
            outputs={},
Q
qiaolongfei 已提交
372 373
            attrs={
                "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
374
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Q
qiaolongfei 已提交
375
            })
Y
Yancey1989 已提交
376

377
        for varname, splited_var in self.param_var_mapping.iteritems():
T
typhoonzero 已提交
378 379
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
380
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
381
            program.global_block().append_op(
T
typhoonzero 已提交
382
                type="concat",
T
typhoonzero 已提交
383
                inputs={"X": splited_var},
T
typhoonzero 已提交
384
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
385
                attrs={"axis": 0})
T
typhoonzero 已提交
386

387
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
388 389
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
390
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
391

T
typhoonzero 已提交
392 393
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
394
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
395
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
396 397
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
398 399 400 401

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
402
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
403 404 405 406 407 408
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
409
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
410 411 412 413 414 415 416 417
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
418 419 420 421 422
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
423 424 425 426 427 428 429 430 431
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
432
            if self.sync_mode and self.trainer_num > 1:
433
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
434 435 436 437 438 439 440 441 442
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
443

Q
qiaolongfei 已提交
444
        # step 3
445
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
446 447 448
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
449
        # step 3.2
T
typhoonzero 已提交
450 451 452 453
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
454 455
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
456
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
457
        # step 3.3
T
typhoonzero 已提交
458
        # Iterate through the ops, and if an op and the optimize ops
459
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
460
        # append it into the sub program.
T
typhoonzero 已提交
461 462 463 464 465

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
466 467
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
468

469 470
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var):
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
471
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
472
                                         self.origin_program, merged_var)
T
typhoonzero 已提交
473
            else:
474 475 476 477 478 479 480
                self._append_pserver_non_opt_ops(block, op, endpoint)

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
481

482
        # append lr decay ops to the child block if exists
483 484
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
485 486
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
487
            for _, op in enumerate(lr_ops):
488
                self._append_pserver_non_opt_ops(lr_decay_block, op, endpoint)
489

T
typhoonzero 已提交
490
        # append op to the current block
Q
qiaolongfei 已提交
491
        grad_to_block_id = []
Q
qiaolongfei 已提交
492
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
493
        for idx, opt_op in enumerate(opt_op_on_pserver):
494
            per_opt_block = pserver_program.create_block(pre_block_idx)
495 496 497 498 499 500 501 502
            # append grad merging ops before clip and weight decay
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
503 504
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
505
                if ufind.is_connected(op, opt_op) and op not in global_ops:
506 507
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
                                           merged_var)
T
typhoonzero 已提交
508 509

        # append global ops
510
        if global_ops:
Q
qiaolongfei 已提交
511 512 513
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
514
                __append_optimize_op__(glb_op, opt_state_block,
515
                                       grad_to_block_id, None)
T
typhoonzero 已提交
516

517
        # process distributed lookup_table
Q
qiaolongfei 已提交
518
        prefetch_var_name_to_block_id = []
519 520
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
521
            table_opt_block = self._create_table_optimize_block(
522
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
Q
qiaolongfei 已提交
523
            prefetch_var_name_to_block_id = self._create_prefetch_block(
524
                pserver_index, pserver_program, table_opt_block)
525 526 527 528

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
Q
qiaolongfei 已提交
529
            assert len(prefetch_var_name_to_block_id) > 0
530
        else:
Q
qiaolongfei 已提交
531
            assert len(prefetch_var_name_to_block_id) == 0
532

533 534 535 536 537 538 539 540 541 542 543
        attrs = {
            "OptimizeBlock": pserver_program.block(1),
            "endpoint": endpoint,
            "Fanin": self.trainer_num,
            "sync_mode": self.sync_mode,
            "grad_to_block_id": grad_to_block_id
        }
        if len(prefetch_var_name_to_block_id) > 0:
            attrs['prefetch_var_name_to_block_id'] \
                = prefetch_var_name_to_block_id

T
typhoonzero 已提交
544 545 546 547 548
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
549
            attrs=attrs)
550

T
typhoonzero 已提交
551 552 553 554 555 556 557 558 559 560
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
561
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
575
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

608 609
    # ====================== private transpiler functions =====================

610
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
611 612
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
613
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
Q
qiaolongfei 已提交
614 615 616 617 618 619 620 621 622
        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_input_vars = []

        # self.all_prefetch_input_vars =
        #       [[var0_prefetch_in_pserver0, var0_prefetch_in_pserver1]
        #        [var1_prefetch_in_pserver0, var1_prefetch_in_pserver1]]
        self.all_prefetch_output_vars = []
623 624 625 626 627 628 629 630 631 632 633 634 635

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

Q
qiaolongfei 已提交
636 637 638 639 640 641 642 643 644 645 646 647 648
                    ids_var = program.global_block().vars[ids_name[0]]
                    prefetch_input_vars = self.create_splited_vars(
                        source_var=ids_var,
                        block=program.global_block(),
                        tag="_prefetch_in_")
                    self.all_prefetch_input_vars.append(prefetch_input_vars)

                    out_var = program.global_block().vars[out_name[0]]
                    prefetch_output_vars = self.create_splited_vars(
                        source_var=out_var,
                        block=program.global_block(),
                        tag="_prefetch_out_")
                    self.all_prefetch_output_vars.append(prefetch_output_vars)
649 650 651 652 653 654 655 656 657 658 659

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
Q
qiaolongfei 已提交
660
                        outputs={"Out": prefetch_input_vars})
661 662 663 664 665

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
Q
qiaolongfei 已提交
666 667
                        inputs={'X': prefetch_input_vars},
                        outputs={"Out": prefetch_output_vars},
Y
Yancey1989 已提交
668
                        attrs={
669
                            "epmap": pserver_endpoints,
Y
Yancey1989 已提交
670 671
                            RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                        })
672 673 674 675 676

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
Q
qiaolongfei 已提交
677
                        inputs={'X': prefetch_output_vars},
678 679 680 681 682 683 684 685 686
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
687
                    delete_ops(program.global_block(), [op])
688 689 690
                    # break for loop
                    break

Y
Yancey1989 已提交
691
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
692
        # 2. add split_ids_op and send_op to send gradient to pservers
693 694
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
695
        table_grad_name = grad_var_name(self.table_name)
696 697 698 699 700 701 702 703 704 705
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
706
                    outputs={"Out": self.trainer_side_table_grad_list})
707 708
                program.global_block().insert_op(
                    index=op_index + 2,
709
                    type="send",
710
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
711 712
                    outputs={},
                    attrs={
713
                        "sync_mode": True,
Y
Yancey1989 已提交
714 715 716
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
717 718 719 720 721 722
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
Q
qiaolongfei 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
        prefetch_var_name_to_block_id = []
        for index in range(len(self.all_prefetch_input_vars)):
            prefetch_block = pserver_program.create_block(optimize_block.idx)
            trainer_ids = self.all_prefetch_input_vars[index][pserver_index]
            pserver_ids = pserver_program.global_block().create_var(
                name=trainer_ids.name,
                type=trainer_ids.type,
                shape=trainer_ids.shape,
                dtype=trainer_ids.dtype)
            trainer_out = self.all_prefetch_output_vars[index][pserver_index]
            pserver_out = pserver_program.global_block().create_var(
                name=trainer_out.name,
                type=trainer_out.type,
                shape=trainer_out.shape,
                dtype=trainer_out.dtype)
            prefetch_block.append_op(
                type="lookup_sparse_table",
                inputs={'Ids': pserver_ids,
                        "W": table_var},
                outputs={"Out": pserver_out},
                attrs={
                    "is_sparse": True,  # has no effect on lookup_table op
                    "is_distributed": True,
                    "padding_idx": -1
                })
            prefetch_var_name_to_block_id.append(trainer_ids.name + ":" + str(
                prefetch_block.idx))
        return prefetch_var_name_to_block_id
751 752

    def _create_table_optimize_block(self, pserver_index, pserver_program,
753
                                     pre_block_idx, grad_to_block_id):
754 755
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
756 757 758 759 760 761 762 763
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
764 765 766
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
        grad_var = pserver_program.global_block().clone_variable(
T
typhoonzero 已提交
767
            self.origin_program.global_block().vars[grad_var_name(
768
                self.table_name)])
769 770 771 772 773 774

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
775
        table_opt_block = pserver_program.create_block(pre_block_idx)
776 777 778
        # only support sgd now
        assert table_opt_op.type == "sgd"

779 780 781
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
782
            pserver_side_table_grad_list = [
783 784 785 786 787 788 789 790 791
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

792
            # append sum op for pserver_side_table_grad_list
793 794
            table_opt_block.append_op(
                type="sum",
795
                inputs={"X": pserver_side_table_grad_list},
796
                outputs={"Out": [grad_var]})
797 798
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
799
            origin_grad_name = grad_var.name
800 801
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
802 803
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
804
                                 " grad_var:" + grad_var.name)
805 806
            grad_var = pserver_program.global_block().rename_var(
                origin_grad_name, splited_grad_name)
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

822 823 824
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

825 826
        return table_opt_block

T
typhoonzero 已提交
827 828 829 830 831
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
832
        Create vars for each split.
T
typhoonzero 已提交
833 834
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
835 836 837 838
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
839 840
        Returns:
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping
841
                from original var name to each var split.
T
typhoonzero 已提交
842
        """
843 844

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
845
        block_map = dict()
846

T
typhoonzero 已提交
847
        var_mapping = dict()
T
typhoonzero 已提交
848 849 850 851 852
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
Y
yi.wu 已提交
853 854 855
        # Do not remove this important debug message:
        print("block map: %s" % block_map)

T
typhoonzero 已提交
856
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
857
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
858
            if len(splited) == 1:
859
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
860 861 862 863 864 865 866 867
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
868
                continue
T
typhoonzero 已提交
869 870

            var_mapping[varname] = []
T
typhoonzero 已提交
871 872 873 874
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
875

T
typhoonzero 已提交
876
            for i, block in enumerate(splited):
T
typhoonzero 已提交
877
                size = block[1]
T
typhoonzero 已提交
878 879 880 881
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
882
                new_var_name = ""
883
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
884 885 886 887 888
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
889
                var = program.global_block().create_var(
T
typhoonzero 已提交
890 891
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
892
                    dtype=orig_var.dtype,
893
                    type=orig_var.type,
T
typhoonzero 已提交
894
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
895
                var_mapping[varname].append(var)
T
typhoonzero 已提交
896
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
897
        return var_mapping
T
done  
typhoonzero 已提交
898

899 900 901 902 903 904 905 906 907 908 909
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
910 911 912 913 914 915 916
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
917
            persistable=persistable)
T
done  
typhoonzero 已提交
918

Y
Yancey1989 已提交
919
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
944

T
typhoonzero 已提交
945 946 947 948
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
949
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

972 973
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
974
        orig_var_name = ""
975 976 977 978 979 980 981 982 983 984
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
985
        else:
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
T
typhoonzero 已提交
1013
        else:
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
            for i in xrange(self.trainer_num):
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
                outputs={"Out": merged_var})
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
1037

1038
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
1039
                            grad_to_block_id, origin_program, merged_var):
1040
        program = optimize_block.program
T
typhoonzero 已提交
1041
        pserver_block = program.global_block()
T
typhoonzero 已提交
1042
        new_inputs = dict()
T
typhoonzero 已提交
1043 1044
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
1045
        for key in opt_op.input_names:
T
typhoonzero 已提交
1046 1047 1048 1049 1050 1051
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1052
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1053 1054 1055 1056
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1057
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1058
                    name=param_block.name,
T
typhoonzero 已提交
1059
                    persistable=True,
T
typhoonzero 已提交
1060 1061 1062
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1063
            elif key == "LearningRate":
1064
                # learning rate variable has already be created by non-optimize op,
1065
                # don't create it once again.
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1077

T
typhoonzero 已提交
1078
        for key in opt_op.input_names:
1079 1080
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1081
                continue
1082
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1083 1084 1085 1086
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1087
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1088 1089 1090 1091 1092
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1093

1094
        # change output's ParamOut variable
1095 1096
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1097
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1098

1099
        optimize_block.append_op(
T
typhoonzero 已提交
1100 1101
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1102
            outputs=outputs,
T
typhoonzero 已提交
1103 1104
            attrs=opt_op.attrs)

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
        for _, g in var_dict.iteritems():
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op, endpoint):
1115
        program = optimize_block.program
1116
        # Append the ops for parameters that do not need to be optimized/updated
1117 1118
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1119
        for key, varlist in inputs.iteritems():
1120 1121
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1122
            for var in varlist:
1123 1124 1125 1126 1127 1128 1129
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
1130
                    program.global_block().create_var(
T
typhoonzero 已提交
1131 1132 1133 1134 1135
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1136 1137
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1138
        for key, varlist in outputs.iteritems():
1139 1140 1141
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1142 1143 1144 1145 1146 1147
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
                    program.global_block().clone_variable(var)
1148

1149
        optimize_block.append_op(
T
typhoonzero 已提交
1150
            type=opt_op.type,
T
typhoonzero 已提交
1151 1152
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1153 1154
            attrs=opt_op.attrs)

1155 1156 1157 1158
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1172 1173
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1174
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1175
        op2_output_names = op2.desc.output_arg_names()
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleAttrName() in op.attrs and \
            int(op.attrs[op_maker.kOpRoleAttrName()]) == int(optimize_role):
            return True
        return False

    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1204 1205
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1206 1207 1208 1209 1210 1211 1212
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1213
        if op.input("Param")[0] in param_names:
1214 1215 1216
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1217
                param = op.input("Param")[0]
T
typhoonzero 已提交
1218
                if same_or_split_var(n, param) and n != param:
1219 1220 1221
                    return True
            return False

T
typhoonzero 已提交
1222
    def _get_input_map_from_op(self, varmap, op):
1223
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1236
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1247 1248 1249 1250 1251 1252

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1253
            if self._is_optimizer_op(op):
1254 1255 1256 1257
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1258
        block = self.origin_program.global_block()
1259 1260 1261 1262 1263
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1264

1265 1266 1267 1268 1269
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1270
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1271 1272 1273 1274 1275 1276
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1277 1278
                    # we only need to append op for once
                    break
1279
        return lr_ops
Y
Yancey1989 已提交
1280 1281

    def _get_optimize_pass(self):
1282 1283 1284 1285 1286 1287
        """
        Get optimizer operators, paramters and gradients from origin_program
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1288 1289 1290
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1291
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1292
        for op in block.ops:
1293
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1294
                opt_ops.append(op)
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
                        op.attrs[RPC_OP_ROLE_ATTR_NAME]:
                        param_name = op.attrs[OP_ROLE_VAR_ATTR_NAME][0]
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
1306 1307
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1308 1309 1310
            else:
                pass
        return opt_ops, params_grads
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False