lars_momentum_op.cu 22.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
16
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
17
#include "paddle/fluid/operators/math/math_cuda_utils.h"
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/optimizers/lars_momentum_op.h"
19 20 21 22 23 24 25 26 27 28 29 30 31
#include "paddle/fluid/platform/fast_divmod.h"

#if CUDA_VERSION >= 11000
#include <cooperative_groups.h>
#endif

#ifdef __HIPCC__
#define LARS_BLOCK_SIZE 256
#else
#define LARS_BLOCK_SIZE 512
#endif

#define LARS_MAX_MERGED_OPS 60
32 33 34 35 36

namespace paddle {
namespace operators {

template <typename T>
37 38
using MultiPrecisionType = typename details::MPTypeTrait<T>::Type;

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
__device__ __forceinline__ float Sqrt(float x) { return sqrtf(x); }
__device__ __forceinline__ double Sqrt(double x) { return sqrt(x); }
__device__ __forceinline__ float Fma(float x, float y, float z) {
  return fmaf(x, y, z);
}
__device__ __forceinline__ double Fma(double x, double y, double z) {
  return fma(x, y, z);
}

template <typename T>
class LarsThreadConfig {
 public:
  int grid_for_norm;
  int grid_for_lars;
#if CUDA_VERSION >= 11000
54

55 56 57 58 59 60 61 62 63
 private:
  int grid_stride;

 public:
  explicit LarsThreadConfig(int64_t numel, int sm_num, int num_blocks_per_sm) {
    int grid = (numel + LARS_BLOCK_SIZE - 1) / LARS_BLOCK_SIZE;
    grid_for_lars =
        std::min(std::min(sm_num * num_blocks_per_sm, grid), LARS_BLOCK_SIZE);
    grid_stride = LARS_BLOCK_SIZE * grid_for_lars;
64 65
  }

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  int GetRepeatTimes(int64_t numel) {
    return (numel + grid_stride - 1) / grid_stride - 1;
  }
#else
  int repeat_times;
  explicit LarsThreadConfig(const int64_t numel) {
    int grid = (numel + LARS_BLOCK_SIZE - 1) / LARS_BLOCK_SIZE;
    grid_for_norm = std::min(grid, LARS_BLOCK_SIZE);
    const int grid_stride = grid_for_norm * LARS_BLOCK_SIZE;
    repeat_times = (numel + grid_stride - 1) / grid_stride - 1;
    // Determine to read 4 fp16 or float data once, but 2 double data once.
    grid_for_lars =
        std::is_same<double, T>::value
            ? (numel + (LARS_BLOCK_SIZE << 1) - 1) / (LARS_BLOCK_SIZE << 1)
            : (numel + (LARS_BLOCK_SIZE << 2) - 1) / (LARS_BLOCK_SIZE << 2);
  }
#endif
};

template <typename T, typename MT, int VecSize, bool IsAmp = false>
__device__ inline void VectorizeLarsUpdate(
    const T* __restrict__ grad, const MT* param, const MT* velocity,
    T* param_out, MT* velocity_out, const MT mu, MT local_lr,
    const MT lars_weight_decay, const MT rescale_grad, const int tid,
    const int grid_stride, const int numel, MT* master_param_out = nullptr) {
  using VecType = paddle::platform::AlignedVector<T, VecSize>;
  using VecMType = paddle::platform::AlignedVector<MT, VecSize>;
  int main = numel >> (VecSize >> 1);
  int tail_offset = main * VecSize;
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  const VecType* grad_vec = reinterpret_cast<const VecType*>(grad);
  const VecMType* param_vec = reinterpret_cast<const VecMType*>(param);
  const VecMType* velocity_vec = reinterpret_cast<const VecMType*>(velocity);
  VecType* param_out_vec = reinterpret_cast<VecType*>(param_out);
  VecMType* velocity_out_vec = reinterpret_cast<VecMType*>(velocity_out);

  VecMType* master_param_out_vec;
  if (IsAmp) {
    master_param_out_vec = reinterpret_cast<VecMType*>(master_param_out);
  }

  for (int i = tid; i < main; i += grid_stride) {
    VecType param_out_tmp;
    VecMType velocity_tmp, param_tmp;
    VecType grad_data = grad_vec[i];
    VecMType param_data = param_vec[i];
    VecMType velocity_data = velocity_vec[i];
#pragma unroll
    for (int j = 0; j < VecSize; ++j) {
      MT grad_val = static_cast<MT>(grad_data[j]) * rescale_grad;
      velocity_tmp[j] =
          Fma(velocity_data[j], mu,
              local_lr * Fma(lars_weight_decay, param_data[j], grad_val));
      param_tmp[j] = param_data[j] - velocity_tmp[j];
      param_out_tmp[j] = static_cast<T>(param_tmp[j]);
    }
    param_out_vec[i] = param_out_tmp;
    velocity_out_vec[i] = velocity_tmp;
    if (IsAmp) {
      master_param_out_vec[i] = param_tmp;
    }
  }

  for (int i = tid + tail_offset; i < numel; i += grid_stride) {
    MT grad_val = static_cast<MT>(grad[i]) * rescale_grad;
    MT param_val = param[i];
    MT velocity_tmp = Fma(velocity[i], mu, local_lr * Fma(lars_weight_decay,
                                                          param_val, grad_val));
    MT param_tmp = param_val - velocity_tmp;
    param_out[i] = static_cast<T>(param_tmp);
    velocity_out[i] = velocity_tmp;
    if (IsAmp) {
      master_param_out[i] = param_tmp;
    }
140 141 142
  }
}

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
#if CUDA_VERSION >= 11000
/* Once CUDA_VERSION is beyond 11, cooperative_groups can be involved in without
  --rdc=true compile flag, then L2_norm kernel can be set with __device__ and
  cooperative_groups::grid_group also can be involved. Otherwise, adding this
  flag may affect much, L2_norm kernel shall be set with __global__.*/
// TODO(limingshu): declaration of cooperative_groups wapper is invalid in host.
template <typename T, typename MT>
__forceinline__ __device__ void L2NormKernel(
    const cooperative_groups::grid_group* cg,
#else
template <typename T, typename MT>
__global__ void L2NormKernel(
#endif
    const T* p_data, const T* __restrict__ g_data, MT* __restrict__ p_buffer,
    MT* __restrict__ g_buffer, const int64_t numel, const int repeat_times,
    const MT rescale_grad, const int thresh = 0, MT* __restrict__ p_n = nullptr,
    MT* __restrict__ g_n = nullptr) {
  __shared__ MT s_buffer[2];
  int tid = threadIdx.x + blockDim.x * blockIdx.x;
  int grid_stride = LARS_BLOCK_SIZE * gridDim.x;
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  MT p_tmp = static_cast<MT>(0);
  MT g_tmp = static_cast<MT>(0);
  while (tid < numel) {
    MT tmp0 = static_cast<MT>(p_data[tid]);
    MT tmp1 = static_cast<MT>(g_data[tid]);
    p_tmp += (tmp0 * tmp0);
    g_tmp += (tmp1 * tmp1);
    tid += grid_stride;
  }
  p_tmp = math::blockReduceSum<MT>(p_tmp, FINAL_MASK);
  g_tmp = math::blockReduceSum<MT>(g_tmp, FINAL_MASK);

  if (threadIdx.x == 0) {
    p_buffer[blockIdx.x] = p_tmp;
    g_buffer[blockIdx.x] = g_tmp;
  }
#if CUDA_VERSION >= 11000
  cg->sync();  // Grid sync for writring partial result to gloabl memory
  MT p_part_sum = threadIdx.x < gridDim.x ? p_buffer[threadIdx.x] : 0;
  MT g_part_sum = threadIdx.x < gridDim.x ? g_buffer[threadIdx.x] : 0;
  MT tmp0 = math::blockReduceSum<MT>(p_part_sum, FINAL_MASK);
  MT tmp1 = math::blockReduceSum<MT>(g_part_sum, FINAL_MASK);
  if (threadIdx.x == 0) {
    s_buffer[0] = tmp0;
    s_buffer[1] = tmp1;
  }
  __syncthreads();
  *p_n = Sqrt(s_buffer[0]);
  *g_n = rescale_grad * Sqrt(s_buffer[1]);
#endif
}

template <typename T, typename MT>
__forceinline__ __device__ void MomentumUpdate(
    const T* param, const T* __restrict__ grad, const MT* velocity,
    T* param_out, MT* velocity_out, const MT* master_param,
    MT* master_param_out, const MT* __restrict__ learning_rate, const MT mu,
    const MT lars_weight_decay, const MT lars_coeff, const MT epsilon,
    const MT rescale_grad, const MT param_norm, const MT grad_norm,
    const int tid, const int grid_stride, const int64_t numel,
    const bool is_amp) {
  const MT lr = learning_rate[0];
  MT local_lr = lr;
  if (lars_weight_decay > static_cast<MT>(0)) {
    local_lr = lr * lars_coeff * param_norm /
               (fma(lars_weight_decay, param_norm, grad_norm) + epsilon);
  }
  if (is_amp) {
    VectorizeLarsUpdate<T, MT, /*VecSize=*/4, /*IsAmp=*/true>(
        grad, master_param, velocity, param_out, velocity_out, mu, local_lr,
        lars_weight_decay, rescale_grad, tid, grid_stride, numel,
        master_param_out);
  } else {
    if (std::is_same<T, float>::value ||
        std::is_same<T, paddle::platform::float16>::value) {
      /* TODO(limingshu): pointer cast may damage memory accessing for fp16 */
      VectorizeLarsUpdate<T, MT, /*VecSize=*/4, /*IsAmp=*/false>(
          grad, reinterpret_cast<const MT*>(param), velocity, param_out,
          velocity_out, mu, local_lr, lars_weight_decay, rescale_grad, tid,
          grid_stride, numel);
224
    } else {
225 226 227 228
      VectorizeLarsUpdate<T, MT, /*VecSize=*/2, /*IsAmp=*/false>(
          grad, reinterpret_cast<const MT*>(param), velocity, param_out,
          velocity_out, mu, local_lr, lars_weight_decay, rescale_grad, tid,
          grid_stride, numel);
229 230
    }
  }
231
}
232

233 234 235 236 237 238 239 240 241 242 243 244
#if CUDA_VERSION >= 11000
template <typename T, typename MT>
struct LarsParamWarpper {
  int64_t numel_arr[LARS_MAX_MERGED_OPS];
  int repeat_arr[LARS_MAX_MERGED_OPS];
  const T* __restrict__ g_arr[LARS_MAX_MERGED_OPS];
  const MT* __restrict__ lr_arr[LARS_MAX_MERGED_OPS];
  T* __restrict__ p_out_arr[LARS_MAX_MERGED_OPS];
  MT* __restrict__ v_out_arr[LARS_MAX_MERGED_OPS];
  MT* __restrict__ master_p_out_arr[LARS_MAX_MERGED_OPS];
  MT weight_decay_arr[LARS_MAX_MERGED_OPS];
};
245

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
template <typename T, typename MT>
__global__ void MergedMomentumLarsKernel(LarsParamWarpper<T, MT> lars_warpper,
                                         MT* __restrict__ p_buffer,
                                         MT* __restrict__ g_buffer,
                                         const int op_num, const MT mu,
                                         const MT lars_coeff, const MT epsilon,
                                         const MT rescale_grad,
                                         const bool is_amp) {
  int grid_stride = gridDim.x * LARS_BLOCK_SIZE;
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  const cooperative_groups::grid_group cg = cooperative_groups::this_grid();
  for (int i = 0; i < op_num; ++i) {
    int numel = lars_warpper.numel_arr[i];
    MT param_norm = static_cast<MT>(0);
    MT grad_norm = static_cast<MT>(0);
    L2NormKernel<T, MT>(&cg, lars_warpper.p_out_arr[i], lars_warpper.g_arr[i],
                        p_buffer, g_buffer, numel, lars_warpper.repeat_arr[i],
                        rescale_grad, 0, &param_norm, &grad_norm);
    MomentumUpdate<T, MT>(
        lars_warpper.p_out_arr[i], lars_warpper.g_arr[i],
        lars_warpper.v_out_arr[i], lars_warpper.p_out_arr[i],
        lars_warpper.v_out_arr[i], lars_warpper.master_p_out_arr[i],
        lars_warpper.master_p_out_arr[i], lars_warpper.lr_arr[i], mu,
        lars_warpper.weight_decay_arr[i], lars_coeff, epsilon, rescale_grad,
        param_norm, grad_norm, tid, grid_stride, numel, is_amp);
  }
}
#endif
274

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
template <typename T, typename MT>
__global__ void MomentumLarsKernel(
    const T* param, const T* __restrict__ grad, const MT* velocity,
    T* param_out, MT* velocity_out, const MT* master_param,
    MT* master_param_out, const MT* __restrict__ learning_rate,
    MT* __restrict__ p_buffer, MT* __restrict__ g_buffer, const MT mu,
    const MT lars_coeff, const MT lars_weight_decay, const MT epsilon,
    const MT rescale_grad, const int repeat_times, const int thresh,
    const int64_t numel, const bool is_amp) {
  int tid = threadIdx.x + blockIdx.x * blockDim.x;
  int grid_stride = gridDim.x * LARS_BLOCK_SIZE;
#if CUDA_VERSION >= 11000
  const cooperative_groups::grid_group cg = cooperative_groups::this_grid();
  MT param_norm = static_cast<MT>(0);
  MT grad_norm = static_cast<MT>(0);
  L2NormKernel<T, MT>(&cg, param, grad, p_buffer, g_buffer, numel, repeat_times,
                      rescale_grad, gridDim.x, &param_norm, &grad_norm);
#else
  const MT rescale_grad_pow = rescale_grad * rescale_grad;
  MT param_part_norm = threadIdx.x < thresh ? p_buffer[threadIdx.x] : 0;
  MT grad_part_norm = threadIdx.x < thresh ? g_buffer[threadIdx.x] : 0;
  __syncthreads();
  MT param_norm = Sqrt(math::blockReduceSum<MT>(param_part_norm, FINAL_MASK));
  MT grad_norm = Sqrt(rescale_grad_pow *
                      math::blockReduceSum<MT>(grad_part_norm, FINAL_MASK));
#endif
  MomentumUpdate<T, MT>(param, grad, velocity, param_out, velocity_out,
                        master_param, master_param_out, learning_rate, mu,
                        lars_weight_decay, lars_coeff, epsilon, rescale_grad,
                        param_norm, grad_norm, tid, grid_stride, numel, is_amp);
}

template <typename T, typename MT>
inline void SeparatedLarsMomentumOpCUDAKernel(
    const platform::CUDADeviceContext& cuda_ctx, const T* param_data,
    T* param_out_data, const MT* velocity_data, MT* velocity_out_data,
    const T* grad_data, const MT* lr, MT* p_buffer, MT* g_buffer, const MT mu,
    const MT lars_coeff, const MT weight_decay, const MT epsilon,
    const MT rescale_grad, const int64_t numel, const MT* master_param_data,
    MT* master_out_data, const bool is_amp) {
  LarsThreadConfig<T> lars_thread_config(numel);
  L2NormKernel<T, MT><<<lars_thread_config.grid_for_norm, LARS_BLOCK_SIZE, 0,
                        cuda_ctx.stream()>>>(
      param_data, grad_data, p_buffer, g_buffer, numel,
      lars_thread_config.repeat_times, rescale_grad);

  MomentumLarsKernel<T, MT><<<lars_thread_config.grid_for_lars, LARS_BLOCK_SIZE,
                              0, cuda_ctx.stream()>>>(
      param_data, grad_data, velocity_data, param_out_data, velocity_out_data,
      master_param_data, master_out_data, lr, p_buffer, g_buffer, mu,
      lars_coeff, weight_decay, epsilon, rescale_grad, 0,
      lars_thread_config.grid_for_norm, numel, is_amp);
}

template <typename DeviceContext, typename T>
class LarsMomentumOpCUDAKernel : public framework::OpKernel<T> {
  using MT = MultiPrecisionType<T>;

 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    int num_blocks_per_sm = 0;
    bool multi_precision = ctx.Attr<bool>("multi_precision");
    auto& cuda_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    int sm_num = cuda_ctx.GetSMCount();
    framework::Tensor tmp_buffer_t =
        ctx.AllocateTmpTensor<MT, platform::CUDADeviceContext>(
            {LARS_BLOCK_SIZE << 1}, cuda_ctx);
    auto* p_buffer = tmp_buffer_t.mutable_data<MT>(ctx.GetPlace());
    auto* g_buffer = p_buffer + LARS_BLOCK_SIZE;
344

345 346 347
    MT mu = static_cast<MT>(ctx.Attr<float>("mu"));
    MT lars_coeff = static_cast<MT>(ctx.Attr<float>("lars_coeff"));
    MT epsilon = static_cast<MT>(ctx.Attr<float>("epsilon"));
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
    MT rescale_grad = static_cast<MT>(ctx.Attr<float>("rescale_grad"));

    auto weight_decay_arr = ctx.Attr<std::vector<float>>("lars_weight_decay");
    auto grad = ctx.MultiInput<framework::LoDTensor>("Grad");
    auto param = ctx.MultiInput<framework::LoDTensor>("Param");
    auto velocity = ctx.MultiInput<framework::LoDTensor>("Velocity");
    auto param_out = ctx.MultiOutput<framework::LoDTensor>("ParamOut");
    auto velocity_out = ctx.MultiOutput<framework::LoDTensor>("VelocityOut");
    auto learning_rate = ctx.MultiInput<framework::LoDTensor>("LearningRate");
    auto master_param = ctx.MultiInput<framework::LoDTensor>("MasterParam");
    auto master_param_out =
        ctx.MultiOutput<framework::LoDTensor>("MasterParamOut");

    int op_num = grad.size();
#if CUDA_VERSION >= 11000
    if (op_num > 1) {
      LarsParamWarpper<T, MT> lars_warpper;
      PADDLE_ENFORCE_LT(
          op_num, LARS_MAX_MERGED_OPS,
          platform::errors::InvalidArgument(
              "The maximum number of merged-ops supported is (%d), but"
              "lars op required for trainning this model is (%d)\n",
              LARS_MAX_MERGED_OPS, op_num));

      /* Implementation of lars optimizer consists of following two steps:
        1. Figure out the L2 norm statistic result of grad data and param data.
        2. Update param and velocity with usage of L2 norm statistic result.
      Step1 and step2 can be merged with api provided by nvida
        cudaLaunchCooperativeKernel:
        - The thread quantity shall less than pyhsical SM limited threads
        - Launche as thread-block can synchronizlly execute. */
      cudaOccupancyMaxActiveBlocksPerMultiprocessor(
          &num_blocks_per_sm, MergedMomentumLarsKernel<T, MT>, LARS_BLOCK_SIZE,
          sizeof(MT) << 1);

      size_t total_numel = 0;
      for (int i = 0; i < op_num; ++i) {
        size_t temp_numel = param[i]->numel();
        total_numel += temp_numel;
        lars_warpper.numel_arr[i] = temp_numel;
        lars_warpper.g_arr[i] = grad[i]->data<T>();
        lars_warpper.lr_arr[i] = learning_rate[i]->data<MT>();
        lars_warpper.p_out_arr[i] =
            param_out[i]->mutable_data<T>(ctx.GetPlace());
        lars_warpper.v_out_arr[i] =
            velocity_out[i]->mutable_data<MT>(ctx.GetPlace());
        lars_warpper.weight_decay_arr[i] = static_cast<MT>(weight_decay_arr[i]);
        PADDLE_ENFORCE_EQ(
            param[i]->data<T>(), lars_warpper.p_out_arr[i],
            platform::errors::InvalidArgument(
                "Input(Param) and Output(ParamOut) must be the same Tensors."));
        PADDLE_ENFORCE_EQ(velocity[i]->data<MT>(), lars_warpper.v_out_arr[i],
                          platform::errors::InvalidArgument(
                              "Input(Velocity) and Output(VelocityOut) must be "
                              "the same Tensors."));
      }
      int64_t avg_numel = total_numel / op_num;
      LarsThreadConfig<float> lars_thread_config(avg_numel, sm_num,
                                                 num_blocks_per_sm);
      for (int i = 0; i < op_num; ++i) {
        lars_warpper.repeat_arr[i] =
            lars_thread_config.GetRepeatTimes(lars_warpper.numel_arr[i]);
      }
      if (multi_precision) {
        for (int i = 0; i < op_num; ++i) {
          lars_warpper.master_p_out_arr[i] =
              master_param_out[i]->mutable_data<MT>(ctx.GetPlace());
          PADDLE_ENFORCE_EQ(master_param[i]->data<MT>(),
                            lars_warpper.master_p_out_arr[i],
                            platform::errors::InvalidArgument(
                                "Input(MasterParam) and Output(MasterParamOut) "
                                "must be the same Tensors."));
        }
      }
      void* cuda_param[] = {reinterpret_cast<void*>(&lars_warpper),
                            reinterpret_cast<void*>(&p_buffer),
                            reinterpret_cast<void*>(&g_buffer),
                            reinterpret_cast<void*>(&op_num),
                            reinterpret_cast<void*>(&mu),
                            reinterpret_cast<void*>(&lars_coeff),
                            reinterpret_cast<void*>(&epsilon),
                            reinterpret_cast<void*>(&rescale_grad),
                            reinterpret_cast<void*>(&multi_precision)};
      // Lanuch all sm theads, and thead of each block synchronizedly cooperate.
      cudaLaunchCooperativeKernel(
          reinterpret_cast<void*>(MergedMomentumLarsKernel<T, MT>),
          lars_thread_config.grid_for_lars, LARS_BLOCK_SIZE, cuda_param, 0,
          cuda_ctx.stream());
    } else {
      auto* param_data = param[0]->data<T>();
      auto* grad_data = grad[0]->data<T>();
      auto* velocity_data = velocity[0]->data<MT>();
      auto* lr = learning_rate[0]->data<MT>();
      auto* param_out_data = param_out[0]->mutable_data<T>(ctx.GetPlace());
      auto* velocity_out_data =
          velocity_out[0]->mutable_data<MT>(ctx.GetPlace());
      const MT* master_param_data =
          multi_precision ? master_param[0]->data<MT>() : nullptr;
      MT* master_param_out_data =
          multi_precision
              ? master_param_out[0]->mutable_data<MT>(ctx.GetPlace())
              : nullptr;
      int64_t numel = param[0]->numel();
      MT lars_weight_decay = weight_decay_arr[0];

      // Figure out how many blocks can be active in each sm.
      cudaOccupancyMaxActiveBlocksPerMultiprocessor(
          &num_blocks_per_sm, MomentumLarsKernel<T, MT>, LARS_BLOCK_SIZE,
          sizeof(MT) << 1);
      LarsThreadConfig<float> lars_thread_config(numel, sm_num,
                                                 num_blocks_per_sm);
      int repeat_times = lars_thread_config.GetRepeatTimes(numel);
      int thresh = 0;
      void* cuda_param[] = {
          reinterpret_cast<void*>(&param_data),
          reinterpret_cast<void*>(&grad_data),
          reinterpret_cast<void*>(&velocity_data),
          reinterpret_cast<void*>(&param_out_data),
          reinterpret_cast<void*>(&velocity_out_data),
          reinterpret_cast<void*>(&master_param_data),
          reinterpret_cast<void*>(&master_param_out_data),
          reinterpret_cast<void*>(&lr),
          reinterpret_cast<void*>(&p_buffer),
          reinterpret_cast<void*>(&g_buffer),
          reinterpret_cast<void*>(&mu),
          reinterpret_cast<void*>(&lars_coeff),
          reinterpret_cast<void*>(&lars_weight_decay),
          reinterpret_cast<void*>(&epsilon),
          reinterpret_cast<void*>(&rescale_grad),
          reinterpret_cast<void*>(&repeat_times),
          reinterpret_cast<void*>(&thresh),  // Just a placeholder
          reinterpret_cast<void*>(&numel),
          reinterpret_cast<void*>(&multi_precision)};
      // Lanuch all sm theads.
      cudaLaunchCooperativeKernel(
          reinterpret_cast<void*>(MomentumLarsKernel<T, MT>),
          lars_thread_config.grid_for_lars, LARS_BLOCK_SIZE, cuda_param, 0,
          cuda_ctx.stream());
    }
#else
    for (int i = 0; i < op_num; ++i) {
      const MT* master_param_data =
          multi_precision ? master_param[i]->data<MT>() : nullptr;
      MT* master_param_out_data =
          multi_precision
              ? master_param_out[i]->mutable_data<MT>(ctx.GetPlace())
              : nullptr;
      SeparatedLarsMomentumOpCUDAKernel<T, MT>(
          cuda_ctx, param[i]->data<T>(),
          param_out[i]->mutable_data<T>(ctx.GetPlace()),
          velocity[i]->data<MT>(),
          velocity_out[i]->mutable_data<MT>(ctx.GetPlace()), grad[i]->data<T>(),
          learning_rate[i]->data<MT>(), p_buffer, g_buffer, mu, lars_coeff,
          weight_decay_arr[i], epsilon, rescale_grad, param[i]->numel(),
          master_param_data, master_param_out_data, multi_precision);
    }
#endif
505 506 507 508 509 510 511 512 513 514
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    lars_momentum,
    ops::LarsMomentumOpCUDAKernel<paddle::platform::CUDADeviceContext, float>,
515 516 517
    ops::LarsMomentumOpCUDAKernel<paddle::platform::CUDADeviceContext, double>,
    ops::LarsMomentumOpCUDAKernel<paddle::platform::CUDADeviceContext,
                                  paddle::platform::float16>);