sequence_concat_op.h 4.7 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Y
Yancey1989 已提交
14 15

#pragma once
C
chengduoZH 已提交
16

17
#include <utility>
18
#include <vector>
19
#include "boost/optional.hpp"
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/op_registry.h"
C
chengduoZH 已提交
21
#include "paddle/fluid/operators/detail/safe_ref.h"
C
chengduo 已提交
22
#include "paddle/fluid/operators/math/concat_and_split.h"
Y
Yancey1989 已提交
23 24 25 26

namespace paddle {
namespace operators {

C
chengduoZH 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40
namespace detail {
template <typename Container>
inline framework::LoD ConcatLoD(const Container &xs,
                                std::vector<framework::Tensor> *xs_in_order) {
  std::vector<size_t> result;
  result.resize(xs[0].get().lod()[0].size());

  for (size_t i = 1; i < result.size(); ++i) {
    size_t sum = 0;
    for (size_t j = 0; j < xs.size(); ++j) {
      auto &x_lod = xs[j].get().lod()[0];
      const framework::Tensor &tensor = xs[j].get();
      xs_in_order->emplace_back(tensor.Slice(x_lod[i - 1], x_lod[i]));
      sum += x_lod[i];
41
    }
C
chengduoZH 已提交
42
    result[i] = sum;
43
  }
C
chengduoZH 已提交
44 45 46
  framework::LoD lod;
  lod.emplace_back(result);
  return lod;
Y
Yancey1989 已提交
47
}
C
chengduoZH 已提交
48
}  // namespace detail
Y
Yancey1989 已提交
49

Q
QI JUN 已提交
50
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
51
class SeqConcatKernel : public framework::OpKernel<T> {
Y
Yancey1989 已提交
52
 public:
C
chengduoZH 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66
  void Compute(const framework::ExecutionContext &context) const override {
    auto xs = detail::VectorRef(context.MultiInput<framework::LoDTensor>("X"),
                                "Cannot find multiple input X");
    auto &out = detail::Ref(context.Output<framework::LoDTensor>("Out"),
                            "Cannot find output");

    size_t lod_size = 0;
    for (auto &x : xs) {
      if (lod_size == 0) {
        lod_size = x.get().lod()[0].size();
      } else {
        PADDLE_ENFORCE_EQ(
            lod_size, x.get().lod()[0].size(),
            "The number of sequence must be same between each input");
Y
Yancey1989 已提交
67 68
      }
    }
C
chengduoZH 已提交
69 70 71 72 73 74 75 76
    PADDLE_ENFORCE_NE(lod_size, 0, "Each input must have sequence information");

    std::vector<framework::Tensor> x_in_order;
    out.set_lod(detail::ConcatLoD(xs, &x_in_order));
    out.mutable_data<T>(context.GetPlace());
    math::ConcatFunctor<DeviceContext, T> functor;
    functor(context.template device_context<DeviceContext>(), x_in_order, 0,
            &out);
Y
Yancey1989 已提交
77 78 79
  }
};

Q
QI JUN 已提交
80
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
81
class SeqConcatGradKernel : public framework::OpKernel<T> {
Y
Yancey1989 已提交
82
 public:
C
chengduoZH 已提交
83 84 85 86 87 88 89 90 91 92
  void Compute(const framework::ExecutionContext &context) const override {
    auto xs = context.MultiInput<framework::LoDTensor>("X");
    auto dxs =
        context.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));
    PADDLE_ENFORCE_EQ(xs.size(), dxs.size());
    for (size_t i = 0; i < dxs.size(); ++i) {
      if (dxs[i] != nullptr) {
        dxs[i]->set_lod(xs[i]->lod());
        dxs[i]->mutable_data<T>(context.GetPlace());
      }
Y
Yancey1989 已提交
93
    }
94

C
chengduoZH 已提交
95
    std::vector<framework::Tensor> sliced_x;
96
    std::vector<boost::optional<framework::Tensor>> sliced_dx;
C
chengduoZH 已提交
97 98 99 100

    for (size_t i = 1; i < xs[0]->lod()[0].size(); ++i) {
      for (size_t j = 0; j < xs.size(); ++j) {
        const framework::LoDTensor *x = xs[j];
101 102
        framework::DDim x_dims = x->dims();

C
chengduoZH 已提交
103 104
        framework::LoDTensor *dx = dxs[j];
        auto &x_lod = x->lod()[0];
105 106 107 108 109 110 111 112 113 114 115

        auto prev_lod = x_lod[i - 1];
        auto next_lod = x_lod[i];

        x_dims[0] = next_lod - prev_lod;

        sliced_x.emplace_back();
        sliced_x.back().Resize(x_dims);

        if (dx) {
          sliced_dx.emplace_back(dx->Slice(prev_lod, next_lod));
C
chengduoZH 已提交
116
        } else {
117
          sliced_dx.emplace_back(boost::none);
C
chengduoZH 已提交
118 119
        }
      }
120
    }
Y
Yancey1989 已提交
121

C
chengduoZH 已提交
122
    std::vector<const framework::Tensor *> sliced_x_ptr;
123
    sliced_x_ptr.reserve(sliced_x.size());
C
chengduoZH 已提交
124 125 126
    for (auto &x : sliced_x) {
      sliced_x_ptr.emplace_back(&x);
    }
Y
Yancey1989 已提交
127

128 129
    std::vector<framework::Tensor *> sliced_dx_ptr;
    sliced_dx_ptr.reserve(sliced_dx.size());
C
chengduoZH 已提交
130
    for (auto &dx : sliced_dx) {
131 132
      if (dx) {
        sliced_dx_ptr.emplace_back(&dx.get());
Y
Yancey1989 已提交
133 134
      }
    }
135 136

    math::SplitFunctor<DeviceContext, T> functor;
C
chengduoZH 已提交
137 138 139 140 141
    functor(context.template device_context<DeviceContext>(),
            detail::Ref(
                context.Input<framework::Tensor>(framework::GradVarName("Out")),
                "Sequence Concat OG must be set"),
            sliced_x_ptr, 0, &sliced_dx_ptr);
Y
Yancey1989 已提交
142 143 144 145 146
  }
};

}  // namespace operators
}  // namespace paddle