squeeze_op.cc 12.6 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/operators/squeeze_op.h"
#include <memory>
17
#include <string>
18
#include <unordered_map>
19
#include <vector>
Y
yuyang18 已提交
20
#include "paddle/fluid/framework/op_registry.h"
21 22 23 24

namespace paddle {
namespace operators {

25
class SqueezeOp : public framework::OperatorWithKernel {
26
 public:
27 28 29
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
30 31
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Squeeze");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Squeeze");
32

Y
yuyang18 已提交
33
    const auto &x_dims = ctx->GetInputDim("X");
34
    // Check input tensor dims (<6) Eigen limit.
35
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
36 37 38 39 40
                      platform::errors::InvalidArgument(
                          "The dimensions of Input(X) "
                          "should be in the range of [1, 6] (Eigen limit)."
                          "But received X's dimensions = %d, X's shape=[%s].",
                          x_dims.size(), x_dims));
41

Y
yuyang18 已提交
42
    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
43
    auto out_dims = GetOutputShape(axes, x_dims);
44
    ctx->SetOutputDim("Out", out_dims);
45 46 47 48 49
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
50 51 52
  }

  static framework::DDim GetOutputShape(const std::vector<int> squeeze_dims,
53
                                        const framework::DDim &in_dims) {
54
    size_t num_squeeze_dims = squeeze_dims.size();
55 56 57 58 59 60
    int cnt_squeezed_dims = 0;
    bool should_squeeze[9] = {false};

    // Determines number of dimensions of output tensor after squeeze.
    // Mark and count the dimensions need to be squeezed
    if (num_squeeze_dims == 0) {
61
      for (int idx = 0; idx < in_dims.size(); ++idx) {
62 63 64 65 66 67
        if (in_dims[idx] == 1) {
          should_squeeze[idx] = true;
          ++cnt_squeezed_dims;
        }
      }
    } else {
68
      for (size_t idx = 0; idx < num_squeeze_dims; ++idx) {
69 70
        int current = squeeze_dims[idx] < 0 ? squeeze_dims[idx] + in_dims.size()
                                            : squeeze_dims[idx];
71 72 73 74 75 76 77 78 79 80 81 82
        PADDLE_ENFORCE_GE(
            current, 0,
            platform::errors::InvalidArgument(
                "Each axis in Attr(axes) should be in the range of [%d, %d]"
                "But current axis is:%d, input tensor's shape = [%s].",
                -in_dims.size(), in_dims.size() - 1, current, in_dims));
        PADDLE_ENFORCE_LT(
            current, in_dims.size(),
            platform::errors::InvalidArgument(
                "Each axis in Attr(axes) should be in the range of [%d, %d]"
                "But current axis is:%d, input tensor's shape = [%s].",
                -in_dims.size(), in_dims.size() - 1, current, in_dims));
83 84 85 86

        if (!(should_squeeze[current])) {
          ++cnt_squeezed_dims;
        }
87 88 89 90 91 92
        should_squeeze[current] = true;
      }
    }

    // Make output dimensions
    std::vector<int64_t> output_shape(in_dims.size() - cnt_squeezed_dims, 0);
93
    for (int in_idx = 0, out_idx = 0; in_idx < in_dims.size(); ++in_idx) {
94 95 96 97 98 99 100
      if (!should_squeeze[in_idx]) {
        output_shape[out_idx++] = in_dims[in_idx];
      }
    }

    return framework::make_ddim(output_shape);
  }
101 102 103 104

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
105 106 107
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
108
  }
109 110
};

111
class SqueezeGradOp : public framework::OperatorWithKernel {
Y
yuyang18 已提交
112
 public:
113 114 115 116 117 118 119 120 121 122 123
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
124 125 126
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
Y
yuyang18 已提交
127 128 129
  }
};

130 131 132
class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
133 134
    AddInput("X", "(Tensor). The input tensor of squeeze operator.");
    AddOutput("Out", "(Tensor). The output tensor of squeeze operator.");
135
    AddAttr<std::vector<int>>("axes",
136
                              "(std::vector<int>). List of integers,"
137
                              " indicating the dimensions to squeeze.")
138
        .SetDefault({});
139
    AddComment(R"DOC(
Y
yuyang18 已提交
140
        Squeeze Operator.
141 142 143 144

        Remove single-dimensional entries from the shape of a tensor.
        Takes a parameter axes with a list of axes to squeeze.
        If axes is not provided, all the single dimensions will be removed from the shape.
145
        If an axis is selected with shape entry not equal to one, an error is raised.
146

Y
yuyang18 已提交
147 148
        Examples:
        Case 1:
149
          Given
Y
yuyang18 已提交
150 151 152 153 154 155 156 157 158
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:
          Given
            X.shape = (1, 3, 1, 5)
159
          and
160
            axes = []
Y
yuyang18 已提交
161 162
          we get:
            Out.shape = (3, 5)
163 164 165 166
    )DOC");
  }
};

167
class Squeeze2Op : public framework::OperatorWithKernel {
168
 public:
169 170 171
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
172 173
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Squeeze2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Squeeze2");
174 175 176 177

    const auto &x_dims = ctx->GetInputDim("X");
    // Check input tensor dims (<6) Eigen limit.
    PADDLE_ENFORCE_LE(x_dims.size(), 6,
178 179 180 181 182
                      platform::errors::InvalidArgument(
                          "The dimensions of Input(X) "
                          "should be in the range of [1, 6] (Eigen limit)."
                          "But received X's dimensions = %d, X's shape = [%s].",
                          x_dims.size(), x_dims));
183 184 185 186 187 188 189 190 191 192 193

    const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");

    auto out_dims = SqueezeOp::GetOutputShape(axes, x_dims);
    ctx->SetOutputDim("Out", out_dims);
    if (x_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }

194 195
    OP_INOUT_CHECK(ctx->HasOutput("XShape"), "Output", "XShape", "Squeeze2");

196 197 198 199 200 201 202
    std::vector<int64_t> xshape_dims(x_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < x_dims.size(); ++i) {
      xshape_dims[i + 1] = x_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", /*->*/ "XShape");
203
  }
Y
yuyang18 已提交
204
};
205

206 207 208 209 210
template <typename T>
class SqueezeGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

211
  void Apply(GradOpPtr<T> grad_op) const override {
212 213 214 215 216 217 218 219
    grad_op->SetType("squeeze_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

220
class Squeeze2GradOp : public framework::OperatorWithKernel {
Y
yuyang18 已提交
221
 public:
222 223 224
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
225 226 227 228
    OP_INOUT_CHECK(context->HasInput("XShape"), "Input", "XShape",
                   "Squeeze2Grad");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "Squeeze2Grad");
229 230 231 232 233 234 235 236 237
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
238 239 240
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
241 242 243
  }
};

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
// FIXME(zcd): squeeze2 adds an intermediate output(XShape) based on squeeze,
// the XShape is used to carry the shape and lod of X which will be used in
// squeeze_grad, in this way, the framework can reuse the memory of X
// immediately the squeeze2_op is finished.
// Considering compatibility issues, we could not fix squeeze2_op
class Squeeze2OpMaker : public SqueezeOpMaker {
 public:
  void Make() override {
    SqueezeOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in SqueezeGradOp.")
        .AsIntermediate();
  }
};

H
hong 已提交
260 261
template <typename T>
class Squeeze2GradOpMaker : public framework::SingleGradOpMaker<T> {
262
 public:
H
hong 已提交
263
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
264

265
  void Apply(GradOpPtr<T> grad_op) const override {
266
    grad_op->SetType("squeeze2_grad");
H
hong 已提交
267 268 269 270
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
271 272 273
  }
};

274 275 276 277
DECLARE_INPLACE_OP_INFERER(SequeezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(SequeezeGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
278
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SqueezeGradNoNeedBufferVarsInferer, "X");
279 280 281 282
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
283 284 285 286
REGISTER_OPERATOR(squeeze, ops::SqueezeOp, ops::SqueezeOpMaker,
                  ops::SqueezeGradOpMaker<paddle::framework::OpDesc>,
                  ops::SqueezeGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(squeeze_grad, ops::SqueezeGradOp,
287
                  ops::SqueezeGradNoNeedBufferVarsInferer);
288 289

REGISTER_OPERATOR(squeeze2, ops::Squeeze2Op, ops::Squeeze2OpMaker,
H
hong 已提交
290 291 292
                  ops::Squeeze2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Squeeze2GradOpMaker<paddle::imperative::OpBase>,
                  ops::SequeezeInplaceInferer);
293
REGISTER_OPERATOR(squeeze2_grad, ops::Squeeze2GradOp,
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
                  ops::SequeezeGradInplaceInferer);

REGISTER_OP_CPU_KERNEL(
    squeeze, ops::SqueezeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::SqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    squeeze_grad,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::SqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    squeeze2, ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, float>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, double>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, int>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Squeeze2Kernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    squeeze2_grad,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Squeeze2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);