decorator.py 17.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
Helin Wang 已提交
15
__all__ = [
S
sneaxiy 已提交
16
    'cache', 'map_readers', 'buffered', 'compose', 'chain', 'shuffle',
17
    'ComposeNotAligned', 'firstn', 'xmap_readers', 'multiprocess_reader'
H
Helin Wang 已提交
18
]
19

T
tangwei12 已提交
20 21
from threading import Thread
import subprocess
Q
Qiao Longfei 已提交
22
import multiprocessing
23
import six
Q
Qiao Longfei 已提交
24
import sys
T
tangwei12 已提交
25

26
from six.moves.queue import Queue
27
from six.moves import zip_longest
28 29
from six.moves import map
from six.moves import zip
30 31
import itertools
import random
T
tangwei12 已提交
32
import zlib
M
minqiyang 已提交
33
import paddle.compat as cpt
34 35


S
sneaxiy 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48
def cache(reader):
    """
    Cache the reader data into memory. 

    Be careful that this method may take long time to process, 
    and consume lots of memory. :code:`reader()` would only 
    call once. 

    Args:
        reader (generator): a reader object which yields 
            data each time.

    Returns:
S
sneaxiy 已提交
49
        generator: a decorated reader object which yields data from cached memory.
S
sneaxiy 已提交
50 51 52 53 54 55 56 57 58 59
    """
    all_data = tuple(reader())

    def __impl__():
        for item in all_data:
            yield item

    return __impl__


H
Helin Wang 已提交
60 61 62
def map_readers(func, *readers):
    """
    Creates a data reader that outputs return value of function using
63
    output of each data reader as arguments.
H
Helin Wang 已提交
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    If input readers output the following data entries: 2 3,
    and the input func is mul(x, y),
    the output of the resulted reader will be 6.


    Args:
        func: a function to read data and compute result, the output of this function 
              will be set as the output of the resulted data reader.
        readers (Reader|list of Reader): list of readers whose outputs will be used as arguments of func.
 
    Returns:
        the resulted data reader (Reader)

    Examples:

        .. code-block:: python

         import paddle.reader
         d = {"h": 0, "i": 1}
         def func(x):
             return d[x]
         def reader():
             yield "h"
             yield "i"
         map_reader_result = paddle.reader.map_readers(func, reader)
H
Helin Wang 已提交
90 91 92 93 94 95
    """

    def reader():
        rs = []
        for r in readers:
            rs.append(r())
96
        for e in map(func, *rs):
H
Helin Wang 已提交
97 98 99 100 101
            yield e

    return reader


H
Helin Wang 已提交
102
def shuffle(reader, buf_size):
103
    """
104 105
    paddle.fluid.io.shuffle ( :ref:`api_fluid_io_shuffle` ) is recommended to use,
    and paddle.reader.shuffle is an alias.
106

107
    This API creates a decorated reader that outputs the shuffled data.
108

109 110 111 112 113 114
    The output data from the origin reader will be saved into a buffer, 
    and then shuffle the data. The size of buffer is determined by argument buf_size.
 
    Args:
        reader(callable): the original reader whose data will be shuffled.
        buf_size(int): the size of shuffled buffer.
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    Returns:
        callable: a decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(5):
                    yield i
            shuffled_reader = fluid.io.shuffle(reader, 3)
            for e in shuffled_reader():
                print(e)
            # outputs are 0~4 unordered arrangement
131 132
    """

H
Helin Wang 已提交
133
    def data_reader():
134
        buf = []
H
Helin Wang 已提交
135
        for e in reader():
136 137 138 139 140 141 142 143 144 145 146 147
            buf.append(e)
            if len(buf) >= buf_size:
                random.shuffle(buf)
                for b in buf:
                    yield b
                buf = []

        if len(buf) > 0:
            random.shuffle(buf)
            for b in buf:
                yield b

H
Helin Wang 已提交
148
    return data_reader
149 150


H
Helin Wang 已提交
151
def chain(*readers):
152
    """
153 154
    Use the input data readers to create a chained data reader. The new created reader
    chains the outputs of input readers together as its output.
155

156 157 158 159 160 161 162 163
    **Note**:
        ``paddle.reader.chain`` is the alias of ``paddle.fluid.io.chain``, and
        ``paddle.fluid.io.chain`` is recommended to use.

    For example, if three input readers' outputs are as follows:
    [0, 0, 0],
    [10, 10, 10],
    [20, 20, 20].
H
Helin Wang 已提交
164
    The chained reader will output:
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    [[0, 0, 0], [10, 10, 10], [20, 20, 20]].

    Args:
        readers(list): input data readers.

    Returns:
        callable: the new chained data reader.

    Examples:
        ..  code-block:: python

            import paddle

            def reader_creator_3(start):
                def reader():
                    for i in range(start, start + 3):
                        yield [i, i, i]
                return reader

            c = paddle.reader.chain(reader_creator_3(0), reader_creator_3(10), reader_creator_3(20))
            for e in c():
                print(e)
            # Output:
            # [0, 0, 0]
            # [1, 1, 1]
            # [2, 2, 2]
            # [10, 10, 10]
            # [11, 11, 11]
            # [12, 12, 12]
            # [20, 20, 20]
            # [21, 21, 21]
            # [22, 22, 22]
197 198 199

    """

H
Helin Wang 已提交
200
    def reader():
201
        rs = []
H
Helin Wang 已提交
202
        for r in readers:
203 204 205 206 207
            rs.append(r())

        for e in itertools.chain(*rs):
            yield e

H
Helin Wang 已提交
208
    return reader
209 210


H
Helin Wang 已提交
211
class ComposeNotAligned(ValueError):
212 213 214
    pass


H
Helin Wang 已提交
215
def compose(*readers, **kwargs):
216 217
    """
    Creates a data reader whose output is the combination of input readers.
218

H
Helin Wang 已提交
219
    If input readers output following data entries:
220
    (1, 2)    3    (4, 5)
H
Helin Wang 已提交
221
    The composed reader will output:
222 223
    (1, 2, 3, 4, 5)

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    Args:
        readers (Reader|list of Reader): readers that will be composed together. 
        check_alignment(bool, optional): Indicates whether the input readers are checked for
                              alignment. If True, whether input readers are aligned
                              correctly will be checked, else alignment will not be checkout and trailing outputs
                              will be discarded. Defaults to True.

    Returns: 
        the new data reader (Reader).

    Raises:
        ComposeNotAligned: outputs of readers are not aligned. This will not raise if check_alignment is set to False.
  
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          def reader_creator_10(dur):
              def reader():
                 for i in range(10):
                     yield i
              return reader
          reader = fluid.io.compose(reader_creator_10(0), reader_creator_10(0))
247 248 249 250 251 252 253 254 255
    """
    check_alignment = kwargs.pop('check_alignment', True)

    def make_tuple(x):
        if isinstance(x, tuple):
            return x
        else:
            return (x, )

H
Helin Wang 已提交
256
    def reader():
257
        rs = []
H
Helin Wang 已提交
258
        for r in readers:
259 260
            rs.append(r())
        if not check_alignment:
261 262
            for outputs in zip(*rs):
                yield sum(list(map(make_tuple, outputs)), ())
263
        else:
264
            for outputs in zip_longest(*rs):
265 266 267
                for o in outputs:
                    if o is None:
                        # None will be not be present if compose is aligned
H
Helin Wang 已提交
268 269
                        raise ComposeNotAligned(
                            "outputs of readers are not aligned.")
270
                yield sum(list(map(make_tuple, outputs)), ())
271

H
Helin Wang 已提交
272
    return reader
273 274


H
Helin Wang 已提交
275
def buffered(reader, size):
276 277
    """
    Creates a buffered data reader.
278

H
Helin Wang 已提交
279 280
    The buffered data reader will read and save data entries into a
    buffer. Reading from the buffered data reader will proceed as long
281
    as the buffer is not empty.
282

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    Args:
        reader (callable): The data reader to read from.
        size (int): Max buffer size.

    Return:
        Variable: The buffered data reader.

    Examples:
        .. code-block:: python

            import paddle.reader as reader
            import time

            def reader_creator_10(dur):
                def reader():
                    for i in range(10):
                        time.sleep(dur)
                        yield i
                return reader
302

303 304 305 306 307 308 309
            for size in range(20):
                b = reader.buffered(reader_creator_10(0), size)
                c = 0
                for i in b():
                    assert i == c
                    c += 1
                assert c == 10
310 311 312 313 314 315 316 317 318 319 320 321
    """

    class EndSignal():
        pass

    end = EndSignal()

    def read_worker(r, q):
        for d in r:
            q.put(d)
        q.put(end)

H
Helin Wang 已提交
322 323
    def data_reader():
        r = reader()
324
        q = Queue(maxsize=size)
325 326 327 328 329 330 331 332 333 334 335
        t = Thread(
            target=read_worker, args=(
                r,
                q, ))
        t.daemon = True
        t.start()
        e = q.get()
        while e != end:
            yield e
            e = q.get()

H
Helin Wang 已提交
336
    return data_reader
Y
Yu Yang 已提交
337 338


Y
Yu Yang 已提交
339
def firstn(reader, n):
Y
Yu Yang 已提交
340
    """
341 342 343 344 345
    paddle.fluid.io.firstn ( :ref:`api_fluid_io_firstn` ) is recommended to use,
    and paddle.reader.firstn is an alias.
    
    This API creates a decorated reader, and limits the max number of 
    samples that reader could return.
Y
Yu Yang 已提交
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    Args:
        reader(callable): the input reader.
        n(int): the max number of samples in the reader.

    Returns:
        callable: the decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(100):
                    yield i
            firstn_reader = fluid.io.firstn(reader, 5)
            for e in firstn_reader():
                print(e)
            # the outputs are: 0 1 2 3 4  
Y
Yu Yang 已提交
366 367
    """

Y
Yu Yang 已提交
368 369 370 371
    # TODO(yuyang18): Check if just drop the reader, could clean the opened
    # resource or not?

    def firstn_reader():
Y
Yu Yang 已提交
372
        for i, item in enumerate(reader()):
Y
Yu Yang 已提交
373
            if i == n:
Y
Yu Yang 已提交
374 375 376
                break
            yield item

Y
Yu Yang 已提交
377
    return firstn_reader
378 379 380 381 382 383


class XmapEndSignal():
    pass


384
def xmap_readers(mapper, reader, process_num, buffer_size, order=False):
385
    """
Z
Zeng Jinle 已提交
386 387
    Use multi-threads to map samples from reader by a mapper defined by user.

388 389 390 391 392 393
    Parameters:
        mapper (callable): A function to map the data from reader.
        reader (callable): A data reader which yields the data. 
        process_num (int): Thread number to handle original sample.
        buffer_size (int): Size of the queue to read data in. 
        order (bool): Whether to keep the data order from original reader. 
Z
Zeng Jinle 已提交
394 395 396
            Default False.

    Returns:
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        A decorated reader with data mapping.

    Example:

        .. code-block:: python

            import paddle.reader as reader
            import time

            def reader_creator_10(dur):
                def reader():
                    for i in range(10):
                        time.sleep(dur)
                        yield i
                return reader

            def mapper(x):
                return (x + 1)

            orders = (True, False)
            thread_num = (1, 2, 4, 8, 16)
            buffer_size = (1, 2, 4, 8, 16)
            for order in orders:
                for t_num in thread_num:
                    for size in buffer_size:
                        user_reader = reader.xmap_readers(mapper,
                                                          reader_creator_10(0),
                                                          t_num, size, order)
                        for n in range(3):
                            result = list()
                            for i in user_reader():
                                result.append(i)
                            if not order:
                                result.sort()
                            for idx, e in enumerate(result):
                                assert e == mapper(idx)
433 434
    """
    end = XmapEndSignal()
W
wanghaoshuang 已提交
435

436 437 438 439 440
    # define a worker to read samples from reader to in_queue
    def read_worker(reader, in_queue):
        for i in reader():
            in_queue.put(i)
        in_queue.put(end)
W
wanghaoshuang 已提交
441

442 443 444 445
    # define a worker to read samples from reader to in_queue with order flag
    def order_read_worker(reader, in_queue):
        in_order = 0
        for i in reader():
W
wanghaoshuang 已提交
446 447
            in_queue.put((in_order, i))
            in_order += 1
448
        in_queue.put(end)
449 450 451 452 453 454 455 456 457 458 459

    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue
    def handle_worker(in_queue, out_queue, mapper):
        sample = in_queue.get()
        while not isinstance(sample, XmapEndSignal):
            r = mapper(sample)
            out_queue.put(r)
            sample = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
W
wanghaoshuang 已提交
460

461 462 463 464 465 466 467 468 469 470
    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue by order
    def order_handle_worker(in_queue, out_queue, mapper, out_order):
        ins = in_queue.get()
        while not isinstance(ins, XmapEndSignal):
            order, sample = ins
            r = mapper(sample)
            while order != out_order[0]:
                pass
            out_queue.put(r)
W
wanghaoshuang 已提交
471
            out_order[0] += 1
472 473 474
            ins = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
475 476

    def xreader():
477 478
        in_queue = Queue(buffer_size)
        out_queue = Queue(buffer_size)
479 480 481 482 483 484 485 486 487 488 489
        out_order = [0]
        # start a read worker in a thread
        target = order_read_worker if order else read_worker
        t = Thread(target=target, args=(reader, in_queue))
        t.daemon = True
        t.start()
        # start several handle_workers
        target = order_handle_worker if order else handle_worker
        args = (in_queue, out_queue, mapper, out_order) if order else (
            in_queue, out_queue, mapper)
        workers = []
490
        for i in range(process_num):
491 492 493 494 495 496
            worker = Thread(target=target, args=args)
            worker.daemon = True
            workers.append(worker)
        for w in workers:
            w.start()

497 498 499 500 501 502 503 504 505 506 507 508 509
        sample = out_queue.get()
        while not isinstance(sample, XmapEndSignal):
            yield sample
            sample = out_queue.get()
        finish = 1
        while finish < process_num:
            sample = out_queue.get()
            if isinstance(sample, XmapEndSignal):
                finish += 1
            else:
                yield sample

    return xreader
510 511


Q
Qiao Longfei 已提交
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
def multiprocess_reader(readers, use_pipe=True, queue_size=1000):
    """
    multiprocess_reader use python multi process to read data from readers
    and then use multiprocess.Queue or multiprocess.Pipe to merge all
    data. The process number is equal to the number of input readers, each
    process call one reader.

    Multiprocess.Queue require the rw access right to /dev/shm, some
    platform does not support.

    you need to create multiple readers first, these readers should be independent
    to each other so that each process can work independently.

    An example:

    .. code-block:: python

        reader0 = reader(["file01", "file02"])
        reader1 = reader(["file11", "file12"])
        reader1 = reader(["file21", "file22"])
        reader = multiprocess_reader([reader0, reader1, reader2],
            queue_size=100, use_pipe=False)
    """

    try:
        import ujson as json
    except Exception as e:
        sys.stderr.write("import ujson error: " + str(e) + " use json\n")
        import json

    assert type(readers) is list and len(readers) > 0

    def _read_into_queue(reader, queue):
545 546 547 548 549 550 551 552 553
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None")
                queue.put(sample)
            queue.put(None)
        except:
            queue.put("")
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567

    def queue_reader():
        queue = multiprocessing.Queue(queue_size)
        for reader in readers:
            p = multiprocessing.Process(
                target=_read_into_queue, args=(reader, queue))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        while finish_num < reader_num:
            sample = queue.get()
            if sample is None:
                finish_num += 1
568 569
            elif sample == "":
                raise ValueError("multiprocess reader raises an exception")
Q
Qiao Longfei 已提交
570 571 572 573
            else:
                yield sample

    def _read_into_pipe(reader, conn):
574 575 576 577 578 579 580 581 582 583 584
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None!")
                conn.send(json.dumps(sample))
            conn.send(json.dumps(None))
            conn.close()
        except:
            conn.send(json.dumps(""))
            conn.close()
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607

    def pipe_reader():
        conns = []
        for reader in readers:
            parent_conn, child_conn = multiprocessing.Pipe()
            conns.append(parent_conn)
            p = multiprocessing.Process(
                target=_read_into_pipe, args=(reader, child_conn))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        conn_to_remove = []
        while finish_num < reader_num:
            for conn in conn_to_remove:
                conns.remove(conn)
            conn_to_remove = []
            for conn in conns:
                sample = json.loads(conn.recv())
                if sample is None:
                    finish_num += 1
                    conn.close()
                    conn_to_remove.append(conn)
608 609 610 611
                elif sample == "":
                    conn.close()
                    conn_to_remove.append(conn)
                    raise ValueError("multiprocess reader raises an exception")
Q
Qiao Longfei 已提交
612 613 614 615 616 617 618
                else:
                    yield sample

    if use_pipe:
        return pipe_reader
    else:
        return queue_reader