test_sparse_utils_dev_api.cc 38.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
Z
zhangkaihuo 已提交
11
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 13 14 15
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
16

17 18
#include <memory>

19 20
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/phi/api/lib/utils/allocator.h"
21 22 23 24
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/kernel_registry.h"
25
#include "paddle/phi/core/tensor_utils.h"
26
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"
W
Wilber 已提交
27

28
namespace phi {
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
namespace tests {

template <typename ValueT, typename IndicesT>
inline void CheckResult(
    const DeviceContext* dev_ctx,
    const SparseCooTensor& coo,
    const std::vector<ValueT> non_zero_elements,
    const std::vector<IndicesT>& non_zero_indices,
    const int64_t non_zero_num,
    const std::shared_ptr<paddle::experimental::DefaultAllocator>& alloc) {
  const DenseTensor real_indices = coo.non_zero_indices();
  const DenseTensor real_elements = coo.non_zero_elements();
  ASSERT_EQ(coo.nnz(), non_zero_num);

#if defined(PADDLE_WITH_CUDA)
44 45
  if (coo.place() == phi::GPUPlace()) {
    const auto* dev_ctx_gpu = static_cast<const phi::GPUContext*>(dev_ctx);
46 47 48 49 50 51 52 53 54
    DenseTensor indices(
        alloc.get(),
        DenseTensorMeta(
            DataType::INT64, real_indices.dims(), real_indices.layout()));

    DenseTensor elements(alloc.get(),
                         DenseTensorMeta(real_elements.dtype(),
                                         real_elements.dims(),
                                         real_elements.layout()));
55 56
    phi::Copy(*dev_ctx_gpu, real_indices, indices.place(), true, &indices);
    phi::Copy(*dev_ctx_gpu, real_elements, elements.place(), true, &elements);
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

    int cmp_indices = memcmp(indices.data<IndicesT>(),
                             non_zero_indices.data(),
                             non_zero_indices.size() * sizeof(IndicesT));
    ASSERT_EQ(cmp_indices, 0);
    int cmp_elements = memcmp(elements.data<ValueT>(),
                              non_zero_elements.data(),
                              non_zero_elements.size() * sizeof(ValueT));
    ASSERT_EQ(cmp_elements, 0);
  } else {
#endif
    int cmp_indices = memcmp(real_indices.data<IndicesT>(),
                             non_zero_indices.data(),
                             non_zero_indices.size() * sizeof(IndicesT));
    ASSERT_EQ(cmp_indices, 0);
    int cmp_elements = memcmp(real_elements.data<ValueT>(),
                              non_zero_elements.data(),
                              non_zero_elements.size() * sizeof(ValueT));
    ASSERT_EQ(cmp_elements, 0);
#if defined(PADDLE_WITH_CUDA)
  }
#endif
}

template <typename T>
void TestDenseToSparseCoo(const DenseTensor& dense_x,
                          const int64_t sparse_dim,
                          const std::vector<T>& non_zero_data,
                          const std::vector<int64_t>& indices_data,
                          const int64_t non_zero_num) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

90
  phi::CPUContext dev_ctx_cpu;
W
Wilber 已提交
91
  dev_ctx_cpu.Init();
92 93 94 95
  dev_ctx_cpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(phi::CPUPlace())
          .get());
W
Wilber 已提交
96

97 98 99 100 101 102 103 104 105 106 107 108
  // 1. test cpu
  auto cpu_sparse_out =
      sparse::DenseToSparseCoo<T>(dev_ctx_cpu, dense_x, sparse_dim);
  CheckResult<T, int64_t>(&dev_ctx_cpu,
                          cpu_sparse_out,
                          non_zero_data,
                          indices_data,
                          non_zero_num,
                          alloc);

// 2. test cuda
#if defined(PADDLE_WITH_CUDA)
109
  phi::GPUContext dev_ctx_gpu;
W
Wilber 已提交
110 111 112 113 114 115 116
  dev_ctx_gpu.PartialInitWithoutAllocator();
  dev_ctx_gpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(dev_ctx_gpu.GetPlace(), dev_ctx_gpu.stream())
          .get());
  dev_ctx_gpu.SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
117
          .GetAllocator(phi::CPUPlace())
W
Wilber 已提交
118
          .get());
W
wanghuancoder 已提交
119 120 121 122
  dev_ctx_gpu.SetPinnedAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
123 124
  dev_ctx_gpu.PartialInitWithAllocator();

125 126 127 128 129 130 131
  const auto cuda_alloc =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          paddle::platform::CUDAPlace());
  DenseTensor d_dense_x(
      cuda_alloc.get(),
      DenseTensorMeta(dense_x.dtype(), dense_x.dims(), dense_x.layout()));

132
  phi::Copy(dev_ctx_gpu, dense_x, phi::GPUPlace(), true, &d_dense_x);
133
  auto sparse_out =
W
Wilber 已提交
134 135
      sparse::DenseToSparseCoo<T>(dev_ctx_gpu, d_dense_x, sparse_dim);
  CheckResult<T, int64_t>(&dev_ctx_gpu,
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
                          sparse_out,
                          non_zero_data,
                          indices_data,
                          non_zero_num,
                          alloc);
#endif
}

TEST(DEV_API, to_sparse_coo) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

  std::default_random_engine random(time(NULL));
  std::uniform_real_distribution<float> dis(0.0, 1.0);
  std::uniform_int_distribution<int> dis_int(4, 64);
  const int rows = dis_int(random), cols = dis_int(random);
  DenseTensor dense_x(
      alloc.get(),
      DenseTensorMeta(DataType::FLOAT32, {rows, cols}, DataLayout::NCHW));

156
  phi::CPUPlace cpu;
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
  auto* dense_x_data = dense_x.mutable_data<float>(cpu);
  std::vector<float> dense_data(rows * cols);
  std::vector<float> non_zero_data;
  std::vector<int64_t> rows_data, cols_data;
  const int64_t sparse_dim = 2;

  const float zero_rate = dis(random);

  int64_t non_zero_num = 0;
  for (int i = 0; i < rows; i++) {
    for (int j = 0; j < cols; j++) {
      bool iszero = dis(random) < zero_rate;
      if (iszero) {
        dense_data[i * cols + j] = 0.0;
      } else {
        float data = dis(random);
        dense_data[i * cols + j] = data;
        non_zero_data.push_back(data);
        rows_data.push_back(i);
        cols_data.push_back(j);
        non_zero_num += 1;
      }
    }
  }

  std::copy(
      dense_data.data(), dense_data.data() + dense_data.size(), dense_x_data);

  std::vector<int64_t> indices_data(non_zero_num * 2);
  memcpy(&indices_data[0], &rows_data[0], non_zero_num * sizeof(int64_t));
  memcpy(&indices_data[non_zero_num],
         &cols_data[0],
         non_zero_num * sizeof(int64_t));

  TestDenseToSparseCoo(
      dense_x, sparse_dim, non_zero_data, indices_data, non_zero_num);
}

TEST(DEV_API, to_sparse_coo_hybird) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

  DenseTensor dense_x(
      alloc.get(),
      DenseTensorMeta(DataType::FLOAT32, {3, 3}, DataLayout::NCHW));

203
  phi::CPUPlace cpu;
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
  const int64_t sparse_dim = 1;  // the non zero element is a vector
  auto* dense_x_data = dense_x.mutable_data<float>(cpu);
  float dense_data[3][3] = {{0.0, 1.0, 0.0}, {0.0, 0.0, 0.0}, {3.2, 0.0, 0.0}};
  std::vector<float> non_zero_data = {
      /*element0(*/ 0.0, 1.0, 0.0 /*)*/, /*element1(*/ 3.2, 0.0, 0.0 /*)*/};
  std::vector<int64_t> indices_data = {0, 2};
  const int64_t non_zero_num = 2;

  std::copy(&dense_data[0][0], &dense_data[0][0] + 9, dense_x_data);
  TestDenseToSparseCoo(
      dense_x, sparse_dim, non_zero_data, indices_data, non_zero_num);
}

TEST(DEV_API, to_sparse_coo_fp16) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

  DenseTensor dense_x(
      alloc.get(),
      DenseTensorMeta(DataType::FLOAT16, {3, 3}, DataLayout::NCHW));

225
  phi::CPUPlace cpu;
226 227
  const int64_t sparse_dim = 2;
  const int64_t non_zero_num = 2;
228
  auto* dense_x_data = dense_x.mutable_data<phi::dtype::float16>(cpu);
229 230
  float dense_data[3][3] = {{0.0, 1.0, 0.0}, {0.0, 0.0, 0.0}, {3.2, 0.0, 0.0}};
  std::vector<float> data = {1.0, 3.2};
231
  std::vector<phi::dtype::float16> non_zero_data(non_zero_num);
232
  for (int i = 0; i < non_zero_num; i++) {
233
    non_zero_data[i] = static_cast<phi::dtype::float16>(data[i]);
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  }
  std::vector<int64_t> indices_data = {0, 2, 1, 0};

  std::copy(&dense_data[0][0], &dense_data[0][0] + 9, dense_x_data);
  TestDenseToSparseCoo<paddle::float16>(
      dense_x, sparse_dim, non_zero_data, indices_data, non_zero_num);
}

TEST(DEV_API, to_sparse_coo_batch) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

  DenseTensor dense_x(
      alloc.get(),
      DenseTensorMeta(DataType::FLOAT32, {2, 3, 3}, DataLayout::NCHW));

250
  phi::CPUPlace cpu;
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
  const int64_t sparse_dim = 3;
  const int64_t non_zero_num = 4;
  auto* dense_x_data = dense_x.mutable_data<float>(cpu);
  float dense_data[2][3][3] = {
      {{0.0, 1.0, 0.0}, {0.0, 0.0, 0.0}, {2.0, 0.0, 0.0}},
      {{0.0, 0.0, 0.0}, {0.0, 3.0, 0.0}, {4.0, 0.0, 0.0}}};
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 4.0};
  std::vector<int64_t> indices_data = {0, 0, 1, 1, 0, 2, 1, 2, 1, 0, 1, 0};
  /*
      0, 0, 1, 1,
      0, 2, 1, 2,
      1, 0, 1, 0
   */

  std::copy(&dense_data[0][0][0], &dense_data[0][0][0] + 18, dense_x_data);
  TestDenseToSparseCoo<float>(
      dense_x, sparse_dim, non_zero_data, indices_data, non_zero_num);
}

270 271 272 273 274 275 276 277 278 279 280 281 282
template <typename T>
void TestSparseCsrToCoo(const DDim& dense_dims,
                        const std::vector<T>& non_zero_data,
                        const std::vector<int64_t>& crows_data,
                        const std::vector<int64_t>& cols_data,
                        const std::vector<int64_t>& indices_data,
                        const int64_t non_zero_num) {
  int batchs = 1;
  int rows = dense_dims[0];
  if (dense_dims.size() == 3) {
    batchs = dense_dims[0];
    rows = dense_dims[1];
  }
283
  phi::DenseTensorMeta crows_meta(
284
      DataType::INT64, {batchs * (rows + 1)}, DataLayout::NCHW);
285
  phi::DenseTensorMeta cols_meta(
286
      DataType::INT64, {non_zero_num}, DataLayout::NCHW);
287
  phi::DenseTensorMeta values_meta(
288 289 290 291 292
      paddle::experimental::CppTypeToDataType<T>::Type(),
      {non_zero_num},
      DataLayout::NCHW);
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
293 294 295 296
  phi::CPUPlace place;
  phi::DenseTensor crows(alloc.get(), crows_meta);
  phi::DenseTensor cols(alloc.get(), cols_meta);
  phi::DenseTensor values(alloc.get(), values_meta);
297 298 299 300 301 302 303 304 305
  memcpy(crows.mutable_data<int64_t>(place),
         crows_data.data(),
         crows_data.size() * sizeof(int64_t));
  memcpy(cols.mutable_data<int64_t>(place),
         cols_data.data(),
         cols_data.size() * sizeof(int64_t));
  memcpy(values.mutable_data<T>(place),
         non_zero_data.data(),
         non_zero_data.size() * sizeof(T));
306
  phi::SparseCsrTensor csr(crows, cols, values, dense_dims);
307 308

  // 1. test cpu
309
  phi::CPUContext dev_ctx_cpu;
310 311 312 313 314
  dev_ctx_cpu.Init();
  dev_ctx_cpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(phi::CPUPlace())
          .get());
315 316 317 318 319 320 321 322 323
  auto cpu_sparse_out = sparse::SparseCsrToCoo<T>(dev_ctx_cpu, csr);
  CheckResult<T, int64_t>(&dev_ctx_cpu,
                          cpu_sparse_out,
                          non_zero_data,
                          indices_data,
                          non_zero_num,
                          alloc);
// 2. test cuda
#if defined(PADDLE_WITH_CUDA)
324
  phi::GPUContext dev_ctx_gpu;
W
Wilber 已提交
325 326 327 328 329 330 331
  dev_ctx_gpu.PartialInitWithoutAllocator();
  dev_ctx_gpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(dev_ctx_gpu.GetPlace(), dev_ctx_gpu.stream())
          .get());
  dev_ctx_gpu.SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
332
          .GetAllocator(phi::CPUPlace())
W
Wilber 已提交
333
          .get());
W
wanghuancoder 已提交
334 335 336 337
  dev_ctx_gpu.SetPinnedAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
W
Wilber 已提交
338 339
  dev_ctx_gpu.PartialInitWithAllocator();

340 341 342
  const auto cuda_alloc =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          paddle::platform::CUDAPlace());
343 344 345
  phi::DenseTensor d_crows(cuda_alloc.get(), crows_meta);
  phi::DenseTensor d_cols(cuda_alloc.get(), cols_meta);
  phi::DenseTensor d_values(cuda_alloc.get(), values_meta);
346 347 348
  phi::Copy(dev_ctx_gpu, crows, d_crows.place(), true, &d_crows);
  phi::Copy(dev_ctx_gpu, cols, d_cols.place(), true, &d_cols);
  phi::Copy(dev_ctx_gpu, values, d_values.place(), true, &d_values);
349
  phi::SparseCsrTensor d_csr(d_crows, d_cols, d_values, dense_dims);
W
Wilber 已提交
350 351
  auto cuda_sparse_out = sparse::SparseCsrToCoo<T>(dev_ctx_gpu, d_csr);
  CheckResult<T, int64_t>(&dev_ctx_gpu,
352 353 354 355 356 357 358 359 360
                          cuda_sparse_out,
                          non_zero_data,
                          indices_data,
                          non_zero_num,
                          alloc);
#endif
}

TEST(DEV_API, sparse_csr_to_coo) {
361
  DDim dense_dims = phi::make_ddim({3, 3});
362 363 364 365 366 367 368 369 370 371 372 373 374 375
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 3.2};
  std::vector<int64_t> indices_data = {0, 1, 1, 2, 1, 0, 2, 0};
  std::vector<int64_t> cols_data = {1, 0, 2, 0};
  std::vector<int64_t> crows_data = {0, 1, 3, 4};
  const int64_t non_zero_num = 4;
  TestSparseCsrToCoo(dense_dims,
                     non_zero_data,
                     crows_data,
                     cols_data,
                     indices_data,
                     non_zero_num);
}

TEST(DEV_API, sparse_csr_to_coo_batch_and_fp16) {
376
  DDim dense_dims = phi::make_ddim({2, 3, 3});
377 378 379 380 381 382
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 3.2, 1.0, 2.0, 3.0, 3.2};
  std::vector<int64_t> cols_data = {1, 0, 2, 0, 1, 0, 2, 0};
  std::vector<int64_t> crows_data = {0, 1, 3, 4, 0, 1, 3, 4};
  std::vector<int64_t> indices_data = {0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 2,
                                       0, 1, 1, 2, 1, 0, 2, 0, 1, 0, 2, 0};
  const int64_t non_zero_num = 8;
383
  using float16 = phi::dtype::float16;
384 385 386 387 388 389 390 391 392 393 394 395
  std::vector<float16> non_zero_data_fp16(non_zero_num);
  for (int64_t i = 0; i < non_zero_num; i++) {
    non_zero_data_fp16[i] = static_cast<float16>(non_zero_data[i]);
  }
  TestSparseCsrToCoo(dense_dims,
                     non_zero_data_fp16,
                     crows_data,
                     cols_data,
                     indices_data,
                     non_zero_num);
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
template <typename ValueT, typename IndicesT>
inline void CheckCsrResult(
    const DeviceContext* dev_ctx,
    const SparseCsrTensor& csr,
    const std::vector<ValueT> non_zero_elements,
    const std::vector<IndicesT>& non_zero_crows,
    const std::vector<IndicesT>& non_zero_cols,
    const int64_t non_zero_num,
    const std::shared_ptr<paddle::experimental::DefaultAllocator>& alloc) {
  const DenseTensor real_crows = csr.non_zero_crows();
  const DenseTensor real_cols = csr.non_zero_cols();
  const DenseTensor real_elements = csr.non_zero_elements();
  ASSERT_EQ(csr.non_zero_cols().numel(), non_zero_num);

#if defined(PADDLE_WITH_CUDA)
  if (csr.place() == paddle::platform::CUDAPlace()) {
412
    const auto* dev_ctx_gpu = static_cast<const phi::GPUContext*>(dev_ctx);
413 414 415 416 417 418 419 420 421 422 423 424
    DenseTensor crows(
        alloc.get(),
        DenseTensorMeta(
            DataType::INT64, real_crows.dims(), real_crows.layout()));
    DenseTensor cols(
        alloc.get(),
        DenseTensorMeta(DataType::INT64, real_cols.dims(), real_cols.layout()));

    DenseTensor elements(alloc.get(),
                         DenseTensorMeta(real_elements.dtype(),
                                         real_elements.dims(),
                                         real_elements.layout()));
425 426 427
    phi::Copy(*dev_ctx_gpu, real_crows, crows.place(), true, &crows);
    phi::Copy(*dev_ctx_gpu, real_cols, cols.place(), true, &cols);
    phi::Copy(*dev_ctx_gpu, real_elements, elements.place(), true, &elements);
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

    int cmp_crows = memcmp(crows.data<IndicesT>(),
                           non_zero_crows.data(),
                           non_zero_crows.size() * sizeof(IndicesT));
    ASSERT_EQ(cmp_crows, 0);
    int cmp_cols = memcmp(cols.data<IndicesT>(),
                          non_zero_cols.data(),
                          non_zero_cols.size() * sizeof(IndicesT));
    ASSERT_EQ(cmp_cols, 0);
    int cmp_elements = memcmp(elements.data<ValueT>(),
                              non_zero_elements.data(),
                              non_zero_elements.size() * sizeof(ValueT));
    ASSERT_EQ(cmp_elements, 0);
  } else {
#endif
    int cmp_crows = memcmp(real_crows.data<IndicesT>(),
                           non_zero_crows.data(),
                           non_zero_crows.size() * sizeof(IndicesT));
    ASSERT_EQ(cmp_crows, 0);
    int cmp_cols = memcmp(real_cols.data<IndicesT>(),
                          non_zero_cols.data(),
                          non_zero_cols.size() * sizeof(IndicesT));
    ASSERT_EQ(cmp_cols, 0);
    int cmp_elements = memcmp(real_elements.data<ValueT>(),
                              non_zero_elements.data(),
                              non_zero_elements.size() * sizeof(ValueT));
    ASSERT_EQ(cmp_elements, 0);
#if defined(PADDLE_WITH_CUDA)
  }
#endif
}

template <typename T>
void TestCooToCsr(const DDim& dense_dims,
                  const int64_t& non_zero_num,
                  const std::vector<T>& non_zero_data,
                  const std::vector<int64_t>& non_zero_indices,
                  const std::vector<int64_t>& cols_data,
                  const std::vector<int64_t>& crows_data) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

470
  phi::CPUPlace cpu;
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
  DenseTensorMeta indices_meta(
      DataType::INT64,
      {static_cast<int64_t>(dense_dims.size()), non_zero_num},
      DataLayout::NCHW);
  DenseTensor indices(alloc.get(), indices_meta);
  DenseTensorMeta values_meta(
      paddle::experimental::CppTypeToDataType<T>::Type(),
      {non_zero_num},
      DataLayout::NCHW);
  DenseTensor values(alloc.get(), values_meta);

  memcpy(indices.mutable_data<int64_t>(cpu),
         non_zero_indices.data(),
         non_zero_indices.size() * sizeof(int64_t));
  memcpy(values.mutable_data<T>(cpu),
         non_zero_data.data(),
         non_zero_data.size() * sizeof(T));
488
  phi::SparseCooTensor coo(indices, values, dense_dims);
489 490

  // 1. test cpu
491
  phi::CPUContext dev_ctx_cpu;
492 493 494 495 496
  dev_ctx_cpu.Init();
  dev_ctx_cpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(phi::CPUPlace())
          .get());
497 498 499 500 501 502 503 504 505 506 507 508 509 510
  auto cpu_sparse_out = sparse::SparseCooToCsr<T>(dev_ctx_cpu, coo);
  CheckCsrResult<T, int64_t>(&dev_ctx_cpu,
                             cpu_sparse_out,
                             non_zero_data,
                             crows_data,
                             cols_data,
                             non_zero_num,
                             alloc);

// 2. test cuda
#if defined(PADDLE_WITH_CUDA)
  const auto cuda_alloc =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          paddle::platform::CUDAPlace());
511
  phi::GPUContext dev_ctx_gpu;
512 513 514 515 516 517 518
  dev_ctx_gpu.PartialInitWithoutAllocator();
  dev_ctx_gpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(dev_ctx_gpu.GetPlace(), dev_ctx_gpu.stream())
          .get());
  dev_ctx_gpu.SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
519
          .GetAllocator(phi::CPUPlace())
520
          .get());
W
wanghuancoder 已提交
521 522 523 524
  dev_ctx_gpu.SetPinnedAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
525
  dev_ctx_gpu.PartialInitWithAllocator();
526 527
  phi::DenseTensor d_indices(cuda_alloc.get(), indices_meta);
  phi::DenseTensor d_values(cuda_alloc.get(), values_meta);
528 529
  phi::Copy(dev_ctx_gpu, indices, phi::GPUPlace(), true, &d_indices);
  phi::Copy(dev_ctx_gpu, values, phi::GPUPlace(), true, &d_values);
530
  phi::SparseCooTensor d_coo(d_indices, d_values, dense_dims);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
  auto cuda_sparse_out = sparse::SparseCooToCsr<T>(dev_ctx_gpu, d_coo);
  CheckCsrResult<T, int64_t>(&dev_ctx_gpu,
                             cuda_sparse_out,
                             non_zero_data,
                             crows_data,
                             cols_data,
                             non_zero_num,
                             alloc);
#endif
}

TEST(DEV_API, coo_to_csr) {
  // float dense_data[3][3] = {{0.0, 1.0, 0.0}, {2.0, 0.0, 3.0}, {3.2, 0.0,
  // 0.0}};
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 3.2};
  std::vector<int64_t> non_zero_indices = {0, 1, 1, 2, 1, 0, 2, 0};
  std::vector<int64_t> cols_data = {1, 0, 2, 0};
  std::vector<int64_t> crows_data = {0, 1, 3, 4};
  const int64_t non_zero_num = 4;
550
  auto dense_dims = phi::make_ddim({3, 3});
551 552 553 554 555 556 557 558 559 560 561 562 563 564
  TestCooToCsr<float>(dense_dims,
                      non_zero_num,
                      non_zero_data,
                      non_zero_indices,
                      cols_data,
                      crows_data);
}

TEST(DEV_API, batch_coo_to_csr) {
  // float dense_data[2][3][3] =
  //  {{{0.0, 1.0, 0.0}, {2.0, 0.0, 3.0}, {3.2, 0.0, 0.0}},
  //  {{0.0, 1.0, 0.0}, {2.0, 0.0, 3.0}, {0.0, 0.0, 0.0}}};
  const int64_t non_zero_num = 7;
  std::vector<float> data = {1.0, 2.0, 3.0, 3.2, 1.0, 2.0, 3.0};
565
  std::vector<phi::dtype::float16> non_zero_data(non_zero_num);
566
  for (int64_t i = 0; i < non_zero_num; i++) {
567
    non_zero_data[i] = static_cast<phi::dtype::float16>(data[i]);
568 569 570 571 572
  }
  std::vector<int64_t> non_zero_indices = {0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 2,
                                           0, 1, 1, 1, 0, 2, 0, 1, 0, 2};
  std::vector<int64_t> cols_data = {1, 0, 2, 0, 1, 0, 2};
  std::vector<int64_t> crows_data = {0, 1, 3, 4, 0, 1, 3, 3};
573 574 575 576 577 578 579
  auto dense_dims = phi::make_ddim({2, 3, 3});
  TestCooToCsr<phi::dtype::float16>(dense_dims,
                                    non_zero_num,
                                    non_zero_data,
                                    non_zero_indices,
                                    cols_data,
                                    crows_data);
580 581 582 583 584 585 586 587 588 589
}

template <typename T>
void TestDenseToSparseCsr(const DenseTensor& dense_x,
                          const int64_t non_zero_num,
                          const std::vector<T>& non_zero_data,
                          const std::vector<int64_t>& crows_data,
                          const std::vector<int64_t>& cols_data) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());
590
  phi::CPUContext dev_ctx_cpu;
591 592 593 594 595
  dev_ctx_cpu.Init();
  dev_ctx_cpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(phi::CPUPlace())
          .get());
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

  // 1. test cpu
  auto cpu_sparse_out = sparse::DenseToSparseCsr<T>(dev_ctx_cpu, dense_x);
  CheckCsrResult<T, int64_t>(&dev_ctx_cpu,
                             cpu_sparse_out,
                             non_zero_data,
                             crows_data,
                             cols_data,
                             non_zero_num,
                             alloc);
// 2. test cuda
#if defined(PADDLE_WITH_CUDA)
  const auto cuda_alloc =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          paddle::platform::CUDAPlace());
  DenseTensor d_dense_x(
      cuda_alloc.get(),
      DenseTensorMeta(dense_x.dtype(), dense_x.dims(), dense_x.layout()));

615
  phi::GPUContext dev_ctx_gpu;
616 617 618 619 620 621 622
  dev_ctx_gpu.PartialInitWithoutAllocator();
  dev_ctx_gpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(dev_ctx_gpu.GetPlace(), dev_ctx_gpu.stream())
          .get());
  dev_ctx_gpu.SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
623
          .GetAllocator(phi::CPUPlace())
624
          .get());
W
wanghuancoder 已提交
625 626 627 628
  dev_ctx_gpu.SetPinnedAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
629
  dev_ctx_gpu.PartialInitWithAllocator();
630
  phi::Copy(dev_ctx_gpu, dense_x, phi::GPUPlace(), true, &d_dense_x);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
  auto sparse_out = sparse::DenseToSparseCsr<T>(dev_ctx_gpu, d_dense_x);

  CheckCsrResult<T, int64_t>(&dev_ctx_gpu,
                             sparse_out,
                             non_zero_data,
                             crows_data,
                             cols_data,
                             non_zero_num,
                             alloc);
#endif
}

TEST(DEV_API, dense_to_sparse_csr) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

  DenseTensor dense_x(
      alloc.get(),
      DenseTensorMeta(
650
          DataType::FLOAT32, phi::make_ddim({3, 3}), DataLayout::NCHW));
651

652
  phi::CPUPlace cpu;
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
  auto* dense_x_data = dense_x.mutable_data<float>(cpu);
  float dense_data[3][3] = {{0.0, 1.0, 0.0}, {2.0, 0.0, 3.0}, {3.2, 0.0, 0.0}};
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 3.2};
  std::vector<int64_t> cols_data = {1, 0, 2, 0};
  std::vector<int64_t> crows_data = {0, 1, 3, 4};
  const int64_t non_zero_num = 4;

  std::copy(&dense_data[0][0], &dense_data[0][0] + 9, dense_x_data);
  TestDenseToSparseCsr<float>(
      dense_x, non_zero_num, non_zero_data, crows_data, cols_data);
}

TEST(DEV_API, dense_to_sparse_csr_batch) {
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

669 670 671
  DenseTensor dense_x(
      alloc.get(),
      DenseTensorMeta(
672
          DataType::FLOAT16, phi::make_ddim({2, 3, 3}), DataLayout::NCHW));
673

674 675
  phi::CPUPlace cpu;
  auto* dense_x_data = dense_x.mutable_data<phi::dtype::float16>(cpu);
676 677 678 679 680
  const int64_t non_zero_num = 7;
  float dense_data[2][3][3] = {
      {{0.0, 1.0, 0.0}, {2.0, 0.0, 3.0}, {3.2, 0.0, 0.0}},
      {{0.0, 1.0, 0.0}, {2.0, 0.0, 0.0}, {3.2, 0.0, 0.0}}};
  std::vector<float> data = {1.0, 2.0, 3.0, 3.2, 1.0, 2.0, 3.2};
681
  std::vector<phi::dtype::float16> non_zero_data(non_zero_num);
682
  for (int64_t i = 0; i < non_zero_num; i++) {
683
    non_zero_data[i] = static_cast<phi::dtype::float16>(data[i]);
684 685 686 687 688 689
  }
  std::vector<int64_t> cols_data = {1, 0, 2, 0, 1, 0, 0};
  std::vector<int64_t> crows_data = {0, 1, 3, 4, 0, 1, 2, 3};

  float* dense_ptr = &dense_data[0][0][0];
  for (int i = 0; i < 18; i++) {
690
    dense_x_data[i] = static_cast<phi::dtype::float16>(dense_ptr[i]);
691
  }
692
  TestDenseToSparseCsr<phi::dtype::float16>(
693 694 695
      dense_x, non_zero_num, non_zero_data, crows_data, cols_data);
}

Z
zhangkaihuo 已提交
696 697 698 699 700 701 702
template <typename T>
void TestSparseCooToDense(const DDim& dense_dims,
                          const std::vector<T>& dense_data,
                          const std::vector<T>& non_zero_data,
                          const std::vector<int64_t>& indices_data,
                          const int64_t non_zero_num,
                          const int64_t sparse_dim) {
703
  phi::CPUContext dev_ctx_cpu;
704 705 706 707 708
  dev_ctx_cpu.Init();
  dev_ctx_cpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(phi::CPUPlace())
          .get());
Z
zhangkaihuo 已提交
709 710 711 712 713 714
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

  DenseTensor dense_indices(
      alloc.get(),
      DenseTensorMeta(DataType::INT64,
715
                      phi::make_ddim({sparse_dim, non_zero_num}),
Z
zhangkaihuo 已提交
716 717 718 719 720 721
                      DataLayout::NCHW));
  std::vector<int64_t> dense_elements_vec;
  dense_elements_vec.push_back(non_zero_num);
  for (int64_t i = sparse_dim; i < dense_dims.size(); i++) {
    dense_elements_vec.push_back(dense_dims[i]);
  }
722
  DDim dense_elements_dims = phi::make_ddim(dense_elements_vec);
Z
zhangkaihuo 已提交
723 724 725 726 727 728
  DenseTensor dense_elements(
      alloc.get(),
      DenseTensorMeta(paddle::experimental::CppTypeToDataType<T>::Type(),
                      dense_elements_dims,
                      DataLayout::NCHW));

729
  phi::CPUPlace cpu_place;
Z
zhangkaihuo 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
  memcpy(dense_indices.mutable_data<int64_t>(cpu_place),
         indices_data.data(),
         indices_data.size() * sizeof(int64_t));
  memcpy(dense_elements.mutable_data<T>(cpu_place),
         non_zero_data.data(),
         non_zero_num * sizeof(T));

  SparseCooTensor coo(dense_indices, dense_elements, dense_dims);

  DenseTensor dense_out = sparse::SparseCooToDense<T>(dev_ctx_cpu, coo);

  int cmp = memcmp(
      &dense_data[0], dense_out.data<T>(), sizeof(T) * dense_data.size());
  ASSERT_EQ(cmp, 0);

#if defined(PADDLE_WITH_CUDA)
  const auto cuda_alloc =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          paddle::platform::CUDAPlace());
749
  phi::GPUContext dev_ctx_gpu;
Z
zhangkaihuo 已提交
750 751 752 753 754 755 756
  dev_ctx_gpu.PartialInitWithoutAllocator();
  dev_ctx_gpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(dev_ctx_gpu.GetPlace(), dev_ctx_gpu.stream())
          .get());
  dev_ctx_gpu.SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
757
          .GetAllocator(phi::CPUPlace())
Z
zhangkaihuo 已提交
758
          .get());
W
wanghuancoder 已提交
759 760 761 762
  dev_ctx_gpu.SetPinnedAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
Z
zhangkaihuo 已提交
763 764 765
  dev_ctx_gpu.PartialInitWithAllocator();
  DenseTensor d_dense_indices(cuda_alloc.get(), dense_indices.meta());
  DenseTensor d_dense_elements(cuda_alloc.get(), dense_elements.meta());
766 767 768 769
  phi::Copy(
      dev_ctx_gpu, dense_indices, phi::GPUPlace(), true, &d_dense_indices);
  phi::Copy(
      dev_ctx_gpu, dense_elements, phi::GPUPlace(), true, &d_dense_elements);
Z
zhangkaihuo 已提交
770 771 772 773 774 775 776
  SparseCooTensor coo_cuda(d_dense_indices, d_dense_elements, dense_dims);
  auto dense_out_cuda = sparse::SparseCooToDense<T>(dev_ctx_gpu, coo_cuda);

  DenseTensor h_dense_out(alloc.get(),
                          DenseTensorMeta(dense_out_cuda.dtype(),
                                          dense_out_cuda.dims(),
                                          dense_out_cuda.layout()));
777 778
  phi::Copy(
      dev_ctx_gpu, dense_out_cuda, h_dense_out.place(), true, &h_dense_out);
Z
zhangkaihuo 已提交
779 780 781 782 783 784 785 786 787 788 789 790
  int cmp_cuda = memcmp(
      &dense_data[0], h_dense_out.data<T>(), sizeof(T) * dense_data.size());
  ASSERT_EQ(cmp_cuda, 0);
#endif
}

TEST(DEV_API, sparse_coo_to_dense) {
  const int non_zero_num = 4;
  const int sparse_dim = 2;
  std::vector<float> dense_data = {0.0, 1.0, 0.0, 2.0, 0.0, 3.0, 3.2, 0.0, 0.0};
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 3.2};
  std::vector<int64_t> indices_data = {0, 1, 1, 2, 1, 0, 2, 0};
791
  DDim dense_dims = phi::make_ddim({3, 3});
Z
zhangkaihuo 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
  TestSparseCooToDense(dense_dims,
                       dense_data,
                       non_zero_data,
                       indices_data,
                       non_zero_num,
                       sparse_dim);
}

TEST(DEV_API, sparse_coo_to_dense_batch_and_fp16) {
  std::vector<float> dense_data = {0.0,
                                   1.0,
                                   0.0,
                                   0.0,
                                   0.0,
                                   0.0,
                                   2.0,
                                   0.0,
                                   0.0,
                                   0.0,
                                   0.0,
                                   0.0,
                                   0.0,
                                   3.0,
                                   0.0,
                                   4.0,
                                   0.0,
                                   0.0};
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 4.0};
  std::vector<int64_t> indices_data = {0, 0, 1, 1, 0, 2, 1, 2, 1, 0, 1, 0};
  const int non_zero_num = 4;
  const int sparse_dim = 3;
823 824
  DDim dense_dims = phi::make_ddim({2, 3, 3});
  using float16 = phi::dtype::float16;
Z
zhangkaihuo 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
  std::vector<float16> dense_data_fp16(dense_data.size()),
      non_zero_data_fp16(non_zero_num);
  for (uint64_t i = 0; i < dense_data.size(); i++) {
    dense_data_fp16[i] = static_cast<float16>(dense_data[i]);
  }
  for (int64_t i = 0; i < non_zero_num; i++) {
    non_zero_data_fp16[i] = static_cast<float16>(non_zero_data[i]);
  }
  TestSparseCooToDense(dense_dims,
                       dense_data_fp16,
                       non_zero_data_fp16,
                       indices_data,
                       non_zero_num,
                       sparse_dim);
}

template <typename T>
void TestSparseCsrToDense(const DDim& dense_dims,
                          const std::vector<T>& dense_data,
                          const std::vector<T>& non_zero_data,
                          const std::vector<int64_t>& crows_data,
                          const std::vector<int64_t>& cols_data,
                          const int64_t non_zero_num) {
  int batchs = 1;
  int rows = dense_dims[0];
  if (dense_dims.size() == 3) {
    batchs = dense_dims[0];
    rows = dense_dims[1];
  }
854 855 856 857 858
  phi::DenseTensorMeta crows_meta(
      DataType::INT64, phi::make_ddim({batchs * (rows + 1)}), DataLayout::NCHW);
  phi::DenseTensorMeta cols_meta(
      DataType::INT64, phi::make_ddim({non_zero_num}), DataLayout::NCHW);
  phi::DenseTensorMeta values_meta(
Z
zhangkaihuo 已提交
859
      paddle::experimental::CppTypeToDataType<T>::Type(),
860
      phi::make_ddim({non_zero_num}),
Z
zhangkaihuo 已提交
861 862 863 864
      DataLayout::NCHW);
  const auto alloc = std::make_shared<paddle::experimental::DefaultAllocator>(
      paddle::platform::CPUPlace());

865 866 867 868
  phi::CPUPlace place;
  phi::DenseTensor crows(alloc.get(), crows_meta);
  phi::DenseTensor cols(alloc.get(), cols_meta);
  phi::DenseTensor values(alloc.get(), values_meta);
Z
zhangkaihuo 已提交
869 870 871 872 873 874 875 876 877
  memcpy(crows.mutable_data<int64_t>(place),
         crows_data.data(),
         crows_data.size() * sizeof(int64_t));
  memcpy(cols.mutable_data<int64_t>(place),
         cols_data.data(),
         cols_data.size() * sizeof(int64_t));
  memcpy(values.mutable_data<T>(place),
         non_zero_data.data(),
         non_zero_data.size() * sizeof(T));
878
  phi::SparseCsrTensor csr(crows, cols, values, dense_dims);
Z
zhangkaihuo 已提交
879 880

  // 1. test cpu
881
  phi::CPUContext dev_ctx_cpu;
882 883 884 885 886
  dev_ctx_cpu.Init();
  dev_ctx_cpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(phi::CPUPlace())
          .get());
Z
zhangkaihuo 已提交
887 888 889 890 891 892 893 894 895 896 897
  DenseTensor cpu_sparse_out = sparse::SparseCsrToDense<T>(dev_ctx_cpu, csr);
  int cmp_cpu = memcmp(cpu_sparse_out.data<T>(),
                       dense_data.data(),
                       sizeof(T) * dense_data.size());
  ASSERT_EQ(cmp_cpu, 0);

// 2. test cuda
#if defined(PADDLE_WITH_CUDA)
  const auto cuda_alloc =
      std::make_shared<paddle::experimental::DefaultAllocator>(
          paddle::platform::CUDAPlace());
898
  phi::GPUContext dev_ctx_gpu;
Z
zhangkaihuo 已提交
899 900 901 902 903 904 905
  dev_ctx_gpu.PartialInitWithoutAllocator();
  dev_ctx_gpu.SetAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(dev_ctx_gpu.GetPlace(), dev_ctx_gpu.stream())
          .get());
  dev_ctx_gpu.SetHostAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
906
          .GetAllocator(phi::CPUPlace())
Z
zhangkaihuo 已提交
907
          .get());
W
wanghuancoder 已提交
908 909 910 911
  dev_ctx_gpu.SetPinnedAllocator(
      paddle::memory::allocation::AllocatorFacade::Instance()
          .GetAllocator(paddle::platform::CUDAPinnedPlace())
          .get());
Z
zhangkaihuo 已提交
912
  dev_ctx_gpu.PartialInitWithAllocator();
913 914 915
  phi::DenseTensor d_crows(cuda_alloc.get(), crows_meta);
  phi::DenseTensor d_cols(cuda_alloc.get(), cols_meta);
  phi::DenseTensor d_values(cuda_alloc.get(), values_meta);
916 917 918
  phi::Copy(dev_ctx_gpu, crows, phi::GPUPlace(), true, &d_crows);
  phi::Copy(dev_ctx_gpu, cols, phi::GPUPlace(), true, &d_cols);
  phi::Copy(dev_ctx_gpu, values, phi::GPUPlace(), true, &d_values);
919
  phi::SparseCsrTensor d_csr(d_crows, d_cols, d_values, dense_dims);
Z
zhangkaihuo 已提交
920
  auto cuda_sparse_out = sparse::SparseCsrToDense<T>(dev_ctx_gpu, d_csr);
921
  phi::DenseTensor h_out(alloc.get(), cpu_sparse_out.meta());
922
  phi::Copy(dev_ctx_gpu, cuda_sparse_out, phi::CPUPlace(), true, &h_out);
Z
zhangkaihuo 已提交
923 924 925 926 927 928 929
  int cmp_cuda =
      memcmp(h_out.data<T>(), dense_data.data(), sizeof(T) * dense_data.size());
  ASSERT_EQ(cmp_cuda, 0);
#endif
}

TEST(DEV_API, sparse_csr_to_dense) {
930
  DDim dense_dims = phi::make_ddim({3, 3});
Z
zhangkaihuo 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
  std::vector<float> dense_data = {0.0, 1.0, 0.0, 2.0, 0.0, 3.0, 3.2, 0.0, 0.0};
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 3.2};
  std::vector<int64_t> cols_data = {1, 0, 2, 0};
  std::vector<int64_t> crows_data = {0, 1, 3, 4};
  const int64_t non_zero_num = 4;

  TestSparseCsrToDense(dense_dims,
                       dense_data,
                       non_zero_data,
                       crows_data,
                       cols_data,
                       non_zero_num);
}

TEST(DEV_API, sparse_csr_to_dense_batch_and_fp16) {
946
  DDim dense_dims = phi::make_ddim({2, 3, 3});
Z
zhangkaihuo 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
  std::vector<float> dense_data = {0.0,
                                   1.0,
                                   0.0,
                                   2.0,
                                   0.0,
                                   3.0,
                                   3.2,
                                   0.0,
                                   0.0,
                                   0.0,
                                   1.0,
                                   0.0,
                                   2.0,
                                   0.0,
                                   3.0,
                                   3.2,
                                   0.0,
                                   0.0};
  std::vector<float> non_zero_data = {1.0, 2.0, 3.0, 3.2, 1.0, 2.0, 3.0, 3.2};
  std::vector<int64_t> cols_data = {1, 0, 2, 0, 1, 0, 2, 0};
  std::vector<int64_t> crows_data = {0, 1, 3, 4, 0, 1, 3, 4};
  const int64_t non_zero_num = 8;

970
  using float16 = phi::dtype::float16;
Z
zhangkaihuo 已提交
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
  std::vector<float16> dense_data_fp16(dense_data.size()),
      non_zero_data_fp16(non_zero_num);
  for (uint64_t i = 0; i < dense_data.size(); i++) {
    dense_data_fp16[i] = static_cast<float16>(dense_data[i]);
  }
  for (int64_t i = 0; i < non_zero_num; i++) {
    non_zero_data_fp16[i] = static_cast<float16>(non_zero_data[i]);
  }
  TestSparseCsrToDense<float16>(dense_dims,
                                dense_data_fp16,
                                non_zero_data_fp16,
                                crows_data,
                                cols_data,
                                non_zero_num);
}

987
}  // namespace tests
988
}  // namespace phi