adam_op.cu 12.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
Wu Yi 已提交
14
#include "paddle/fluid/operators/optimizers/adam_op.h"
15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
namespace paddle {
namespace operators {

template <typename T>
__global__ void AdamKernelREG(T beta1, T beta2, T epsilon, T beta1_pow_,
                              T beta2_pow_, const T* moment1, T* moment1_out,
                              const T* moment2, T* moment2_out, const T* lr_,
                              const T* grad, const T* param, T* param_out,
                              int ndim) {
  T lr = *lr_;
  T beta1_pow = beta1_pow_;
  T beta2_pow = beta2_pow_;

  lr *=
      sqrt(static_cast<T>(1.0) - beta2_pow) / (static_cast<T>(1.0) - beta1_pow);

  int id = blockIdx.x * blockDim.x + threadIdx.x;

  for (; id < ndim; id += gridDim.x * blockDim.x) {
    T p = param[id];
    T g = grad[id];
    T mom1 = moment1[id];
    T mom2 = moment2[id];
    mom1 = beta1 * mom1 + (static_cast<T>(1.0) - beta1) * g;
    mom2 = beta2 * mom2 + (static_cast<T>(1.0) - beta2) * g * g;
M
MRXLT 已提交
41 42
    p -= lr * (mom1 /
               (sqrt(mom2) + epsilon * sqrt(static_cast<T>(1.0) - beta2_pow)));
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

    moment1_out[id] = mom1;
    moment2_out[id] = mom2;
    param_out[id] = p;
  }
}

template <typename T>
__global__ void AdamKernelMEM(T beta1, T beta2, T epsilon, const T* beta1_pow_,
                              const T* beta2_pow_, const T* moment1,
                              T* moment1_out, const T* moment2, T* moment2_out,
                              const T* lr_, const T* grad, const T* param,
                              T* param_out, int ndim) {
  T lr = *lr_;
  T beta1_pow = *beta1_pow_;
  T beta2_pow = *beta2_pow_;

  lr *=
      sqrt(static_cast<T>(1.0) - beta2_pow) / (static_cast<T>(1.0) - beta1_pow);

  int id = blockIdx.x * blockDim.x + threadIdx.x;

  for (; id < ndim; id += gridDim.x * blockDim.x) {
    T p = param[id];
    T g = grad[id];
    T mom1 = moment1[id];
    T mom2 = moment2[id];
    mom1 = beta1 * mom1 + (static_cast<T>(1.0) - beta1) * g;
    mom2 = beta2 * mom2 + (static_cast<T>(1.0) - beta2) * g * g;
M
MRXLT 已提交
72 73
    p -= lr * (mom1 /
               (sqrt(mom2) + epsilon * sqrt(static_cast<T>(1.0) - beta2_pow)));
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    moment1_out[id] = mom1;
    moment2_out[id] = mom2;
    param_out[id] = p;
  }
}
template <typename T>
__global__ void UpdateBetaPow(T beta1, T beta2, const T* beta1_pow_,
                              const T* beta2_pow_, T* beta1_pow_out,
                              T* beta2_pow_out) {
  *beta1_pow_out = beta1 * beta1_pow_[0];
  *beta2_pow_out = beta2 * beta2_pow_[0];
}

template <typename T>
__global__ void SparseAdamCUDAKernelREG(
    T beta1, T beta2, T epsilon, const T beta1_pow, const T beta2_pow,
    const T* mom1_, T* mom1_out_, const T* mom2_, T* mom2_out_, const T* lr_,
    const T* grad_, const T* param_, T* param_out_, const int64_t* rows_,
    int64_t row_numel, int64_t row_count, bool lazy_mode, int ndim) {
  int id = blockIdx.x * blockDim.x + threadIdx.x;
  T lr = *lr_;
  lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

  for (; id < ndim; id += blockDim.x * gridDim.x) {
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_count, id / row_numel);
    if (lazy_mode && row_idx < 0) {
      return;
    } else {
      T mom1 = mom1_[id];
      T mom2 = mom2_[id];
      T p = param_[id];
      T g = row_idx >= 0 ? grad_[row_idx * row_numel + id % row_numel] : 0;
      mom1 = beta1 * mom1 + (1 - beta1) * g;
      mom2 = beta2 * mom2 + (1 - beta2) * g * g;
M
MRXLT 已提交
110 111
      p -= lr * (mom1 / (sqrt(mom2) +
                         epsilon * sqrt(static_cast<T>(1.0) - beta2_pow)));
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

      // Write back to global memory
      mom1_out_[id] = mom1;
      mom2_out_[id] = mom2;
      param_out_[id] = p;
    }
  }
}

template <typename T>
class AdamOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    const auto* param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE_EQ(param_var->IsType<framework::LoDTensor>(), true,
                      platform::errors::InvalidArgument(
                          "The Var(%s)'s type should be LoDTensor, "
                          "but the received is %s",
                          ctx.InputNames("Param").front(),
                          framework::ToTypeName(param_var->Type())));

    using paddle::framework::LoDTensor;

    int64_t min_row_size_to_use_multithread =
        ctx.Attr<int64_t>("min_row_size_to_use_multithread");
    bool lazy_mode = ctx.Attr<bool>("lazy_mode");
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
    auto* param = ctx.Input<LoDTensor>("Param");
    auto* grad_var = ctx.InputVar("Grad");
    auto* mom1 = ctx.Input<LoDTensor>("Moment1");
    auto* mom2 = ctx.Input<LoDTensor>("Moment2");
    auto* lr = ctx.Input<LoDTensor>("LearningRate");

    auto* beta1_pow = ctx.Input<LoDTensor>("Beta1Pow");
    auto* beta2_pow = ctx.Input<LoDTensor>("Beta2Pow");

    auto* param_out = ctx.Output<LoDTensor>("ParamOut");
    auto* mom1_out = ctx.Output<LoDTensor>("Moment1Out");
    auto* mom2_out = ctx.Output<LoDTensor>("Moment2Out");
    auto* beta1_pow_out = ctx.Output<LoDTensor>("Beta1PowOut");
    auto* beta2_pow_out = ctx.Output<LoDTensor>("Beta2PowOut");

    T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
    if (ctx.HasInput("Beta1Tensor")) {
      auto* beta1_tensor = ctx.Input<framework::Tensor>("Beta1Tensor");
W
wangchaochaohu 已提交
157 158 159 160
      PADDLE_ENFORCE_EQ(beta1_tensor->numel(), 1,
                        platform::errors::InvalidArgument(
                            "Input(Beta1Tensor) size must be 1, but get %d",
                            beta1_tensor->numel()));
161 162 163 164 165
      beta1 = static_cast<T>(GetAttrFromTensor(beta1_tensor));
    }
    T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
    if (ctx.HasInput("Beta2Tensor")) {
      auto* beta2_tensor = ctx.Input<framework::Tensor>("Beta2Tensor");
W
wangchaochaohu 已提交
166 167 168 169
      PADDLE_ENFORCE_EQ(beta2_tensor->numel(), 1,
                        platform::errors::InvalidArgument(
                            "Input(Beta2Tensor) size must be 1, but get %d",
                            beta2_tensor->numel()));
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
      beta2 = static_cast<T>(GetAttrFromTensor(beta2_tensor));
    }
    VLOG(3) << "beta1_pow.numel() : " << beta1_pow->numel()
            << "beta2_pow.numel() : " << beta2_pow->numel();
    VLOG(3) << "param.numel(): " << param->numel();
    PADDLE_ENFORCE_EQ(beta1_pow_out->numel(), 1,
                      platform::errors::InvalidArgument(
                          "beta1 pow output size should be 1, but received "
                          "value is:%d.",
                          beta1_pow_out->numel()));

    PADDLE_ENFORCE_EQ(beta2_pow_out->numel(), 1,
                      platform::errors::InvalidArgument(
                          "beta2 pow output size should be 1, but received "
                          "value is:%d.",
                          beta2_pow_out->numel()));
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();

    if (grad_var->IsType<framework::LoDTensor>()) {
      auto* grad = ctx.Input<LoDTensor>("Grad");

      // update param and moment
      int threads = 512;
      int blocks = (param->numel() + threads - 1) / threads;

      if (beta1_pow->place() == platform::CPUPlace() &&
          beta2_pow->place() == platform::CPUPlace()) {
        // Compute with betapow in REG
        AdamKernelREG<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
            beta1, beta2, epsilon, *beta1_pow->data<T>(), *beta2_pow->data<T>(),
            mom1->data<T>(), mom1_out->mutable_data<T>(ctx.GetPlace()),
            mom2->data<T>(), mom2_out->mutable_data<T>(ctx.GetPlace()),
            lr->data<T>(), grad->data<T>(), param->data<T>(),
            param_out->mutable_data<T>(ctx.GetPlace()), param->numel());
        // Cpu update
        beta1_pow_out->mutable_data<T>(platform::CPUPlace())[0] =
            beta1 * beta1_pow->data<T>()[0];
        beta2_pow_out->mutable_data<T>(platform::CPUPlace())[0] =
            beta2 * beta2_pow->data<T>()[0];
      } else {
        AdamKernelMEM<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
            beta1, beta2, epsilon, beta1_pow->data<T>(), beta2_pow->data<T>(),
            mom1->data<T>(), mom1_out->mutable_data<T>(ctx.GetPlace()),
            mom2->data<T>(), mom2_out->mutable_data<T>(ctx.GetPlace()),
            lr->data<T>(), grad->data<T>(), param->data<T>(),
            param_out->mutable_data<T>(ctx.GetPlace()), param->numel());
        // Update with gpu
        UpdateBetaPow<T><<<1, 32, 0, dev_ctx.stream()>>>(
            beta1, beta2, beta1_pow->data<T>(), beta2_pow->data<T>(),
            beta1_pow_out->mutable_data<T>(ctx.GetPlace()),
            beta2_pow_out->mutable_data<T>(ctx.GetPlace()));
      }

    } else if (grad_var->IsType<framework::SelectedRows>()) {
      auto* grad = ctx.Input<framework::SelectedRows>("Grad");
      if (grad->rows().size() == 0) {
        VLOG(3) << "grad row size is 0!!";
        return;
      }

      std::vector<int64_t> cpu_rows(grad->rows().begin(), grad->rows().end());
      bool is_strict_sorted = true;
      for (size_t i = 1; i < cpu_rows.size(); ++i) {
        if (cpu_rows[i - 1] >= cpu_rows[i]) {
          is_strict_sorted = false;
          break;
        }
      }

      framework::SelectedRows tmp_grad_merge;
      const framework::SelectedRows* grad_merge_ptr;
      if (is_strict_sorted) {
        grad_merge_ptr = grad;
      } else {
        // merge duplicated rows if any.
        // The rows of grad_merge have been sorted inside MergeAdd functor
        scatter::MergeAdd<platform::CUDADeviceContext, T> merge_func;
        merge_func(ctx.template device_context<platform::CUDADeviceContext>(),
                   *grad, &tmp_grad_merge, true);
        grad_merge_ptr = &tmp_grad_merge;
      }
      auto& grad_merge = *grad_merge_ptr;
      auto& grad_tensor = grad_merge.value();
      const T* grad_data = grad_tensor.template data<T>();
      const int64_t* rows = grad_merge.rows().Data(ctx.GetPlace());
      auto row_numel = grad_tensor.numel() / grad_merge.rows().size();

      if (beta1_pow->place() == platform::CPUPlace() &&
          beta2_pow->place() == platform::CPUPlace()) {
        int threads = 512;
        int ndim = param->numel();
        int blocks = (ndim + threads - 1) / threads;

        SparseAdamCUDAKernelREG<T><<<blocks, threads, 0, dev_ctx.stream()>>>(
            beta1, beta2, epsilon, *beta1_pow->data<T>(), *beta2_pow->data<T>(),
            mom1->data<T>(), mom1_out->mutable_data<T>(ctx.GetPlace()),
            mom2->data<T>(), mom2_out->mutable_data<T>(ctx.GetPlace()),
            lr->data<T>(), grad_data, param->data<T>(),
            param_out->mutable_data<T>(ctx.GetPlace()), rows, row_numel,
            grad_merge.rows().size(), lazy_mode, ndim);
        // Update with cpu
        beta1_pow_out->mutable_data<T>(platform::CPUPlace())[0] =
            beta1 * beta1_pow->data<T>()[0];
        beta2_pow_out->mutable_data<T>(platform::CPUPlace())[0] =
            beta2 * beta2_pow->data<T>()[0];
      } else {
        SparseAdamFunctor<T, GPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow->data<T>(), beta2_pow->data<T>(),
            mom1->data<T>(), mom1_out->mutable_data<T>(ctx.GetPlace()),
            mom2->data<T>(), mom2_out->mutable_data<T>(ctx.GetPlace()),
            lr->data<T>(), grad_data, param->data<T>(),
            param_out->mutable_data<T>(ctx.GetPlace()), rows, row_numel,
            grad_merge.rows().size(), lazy_mode);

        // FIXME(minqiyang): remove BinarySearch in GPU later
        platform::ForRange<platform::CUDADeviceContext> for_range(
            static_cast<const platform::CUDADeviceContext&>(
                ctx.device_context()),
            param->numel());
        for_range(functor);
        // update beta1 and beta2
        UpdateBetaPow<T><<<1, 32, 0, dev_ctx.stream()>>>(
            beta1, beta2, beta1_pow->data<T>(), beta2_pow->data<T>(),
            beta1_pow_out->mutable_data<T>(ctx.GetPlace()),
            beta2_pow_out->mutable_data<T>(ctx.GetPlace()));
      }
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Variable type not supported by adam_op"));
    }
  }
};

}  // namespace operators
}  // namespace paddle

306
namespace ops = paddle::operators;
307 308
REGISTER_OP_CUDA_KERNEL(adam, ops::AdamOpCUDAKernel<float>,
                        ops::AdamOpCUDAKernel<double>);