test_momentum_op.py 7.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

S
sidgoyal78 已提交
17 18
import unittest
import numpy as np
19 20
import paddle.fluid.core as core
from paddle.fluid.op import Operator
21
from op_test import OpTest
S
sidgoyal78 已提交
22 23


K
kavyasrinet 已提交
24
class TestMomentumOp1(OpTest):
S
sidgoyal78 已提交
25 26 27
    def setUp(self):
        self.op_type = "momentum"

28 29 30 31
        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        velocity = np.zeros((123, 321)).astype("float32")
        learning_rate = np.array([0.001]).astype("float32")
S
sidgoyal78 已提交
32
        mu = 0.0001
K
kavyasrinet 已提交
33
        use_nesterov = False
S
sidgoyal78 已提交
34 35 36 37 38 39 40 41 42 43

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
            'LearningRate': learning_rate
        }

        self.attrs = {'mu': mu}

S
sidgoyal78 已提交
44
        velocity_out = mu * velocity + grad
K
kavyasrinet 已提交
45
        if use_nesterov:
46
            param_out = param - grad * learning_rate - \
K
kavyasrinet 已提交
47 48 49 50 51 52 53 54 55 56 57
                        velocity_out * mu * learning_rate
        else:
            param_out = param - learning_rate * velocity_out

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def test_check_output(self):
        self.check_output()


class TestMomentumOp2(OpTest):
58
    '''Test Momentum with default values for attributes
K
kavyasrinet 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    '''

    def setUp(self):
        self.op_type = "momentum"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        velocity = np.zeros((123, 321)).astype("float32")
        learning_rate = np.array([0.001]).astype("float32")
        mu = 0.0001
        use_nesterov = True

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
            'LearningRate': learning_rate
        }

78
        self.attrs = {'mu': mu, 'use_nesterov': use_nesterov}
K
kavyasrinet 已提交
79 80 81

        velocity_out = mu * velocity + grad
        if use_nesterov:
82
            param_out = param - grad * learning_rate - \
K
kavyasrinet 已提交
83 84 85
                        velocity_out * mu * learning_rate
        else:
            param_out = param - learning_rate * velocity_out
S
sidgoyal78 已提交
86 87 88 89 90 91 92

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def test_check_output(self):
        self.check_output()


93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
class TestLarsMomentumOp(OpTest):
    def setUp(self):
        self.op_type = "lars_momentum"

        param = np.random.random((123, 321)).astype("float32")
        grad = np.random.random((123, 321)).astype("float32")
        velocity = np.zeros((123, 321)).astype("float32")
        learning_rate = np.array([0.001]).astype("float32")
        mu = 0.0001
        lars_coeff = 0.001
        lars_weight_decay = 0.0005

        self.inputs = {
            'Param': param,
            'Grad': grad,
            'Velocity': velocity,
            'LearningRate': learning_rate
        }

        self.attrs = {
            'mu': mu,
            'lars_coeff': lars_coeff,
            'lars_weight_decay': lars_weight_decay
        }

        pnorm = np.sqrt(np.square(param).sum())
        gnorm = np.sqrt(np.square(grad).sum())
        local_lr = learning_rate * lars_coeff * pnorm / (
            gnorm + lars_weight_decay * param)
        velocity_out = mu * velocity + local_lr * (grad + lars_weight_decay *
                                                   param)
        param_out = param - velocity_out

        self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

    def test_check_output(self):
        self.check_output()


132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
class TestSparseMomentumOp(unittest.TestCase):
    def setUp(self):
        self.use_nesterov = False

    def check_with_place(self, place):
        self.init_kernel()
        scope = core.Scope()
        # create and initialize Grad Variable
        height = 10
        rows = [0, 4, 7]
        row_numel = 12
        mu = 1.0
        use_nesterov = self.use_nesterov

        # create and initialize Param Variable
        param = scope.var('Param').get_tensor()
        param_array = np.full((height, row_numel), 5.0).astype("float32")
        param.set(param_array, place)
        param_out = scope.var("ParamOut").get_tensor()
        param_out_array = np.full((height, row_numel), 0.0).astype("float32")
        param_out.set(param_out_array, place)

        grad_selected_rows = scope.var('Grad').get_selected_rows()
        grad_selected_rows.set_height(height)
        grad_selected_rows.set_rows(rows)
        grad_np_array = np.ones((len(rows), row_numel)).astype("float32")
        grad_np_array[0, 0] = 2.0
        grad_np_array[2, 8] = 4.0
        grad_tensor = grad_selected_rows.get_tensor()
        grad_tensor.set(grad_np_array, place)

D
dzhwinter 已提交
163 164 165 166 167
        velocity = scope.var('Velocity').get_tensor()
        velocity_np_array = np.ones((height, row_numel)).astype("float32")
        velocity.set(velocity_np_array, place)
        velocity_out = scope.var('VelocityOut').get_tensor()
        velocity_out_np_array = np.full((height, row_numel),
168
                                        0.0).astype("float32")
D
dzhwinter 已提交
169
        velocity_out.set(velocity_out_np_array, place)
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

        # create and initialize LeraningRate Variable
        lr = scope.var('LearningRate').get_tensor()
        lr_array = np.full((1), 2.0).astype("float32")
        lr.set(lr_array, place)

        # create and run operator
        op = Operator(
            "momentum",
            Param='Param',
            Grad='Grad',
            Velocity='Velocity',
            ParamOut='ParamOut',
            VelocityOut='VelocityOut',
            LearningRate='LearningRate',
            mu=mu,
            use_nesterov=use_nesterov)
        op.run(scope, place)

        # get and compare result
        param_out_np_array = np.array(param_out)
D
dzhwinter 已提交
191
        velocity_out_np_array = np.array(velocity_out)
192 193 194

        # TODO(dzh): add a more suitable general numpy interface
        # for sparse update.
D
dzhwinter 已提交
195 196 197 198 199
        _grad_np_array = np.full((height, row_numel), 0.0).astype("float32")
        for i in range(len(rows)):
            _grad_np_array[rows[i]] = grad_np_array[i]
        _velocity_out = mu * velocity_np_array + _grad_np_array
        _param = param_array
200
        if use_nesterov:
D
dzhwinter 已提交
201 202
            _param_out = _param - (_grad_np_array + _velocity_out * mu
                                   ) * lr_array
203
        else:
D
dzhwinter 已提交
204
            _param_out = _param - lr_array * _velocity_out
205
        self.assertTrue((_velocity_out == velocity_out_np_array).all())
D
dzhwinter 已提交
206
        self.assertTrue((_param_out == param_out_np_array).all())
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

    def init_kernel(self):
        pass

    def test_sparse_momentum(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_with_place(place)


class TestSparseMomentumOp2(TestSparseMomentumOp):
    def init_kernel(self):
        self.use_nesterov = True


S
sidgoyal78 已提交
224 225
if __name__ == "__main__":
    unittest.main()