label_smooth_op.cc 6.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/label_smooth_op.h"
W
wanghuancoder 已提交
16

17
#include <string>
Y
Yibing Liu 已提交
18

W
wanghuancoder 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31
namespace paddle {
namespace framework {
class InferShapeContext;
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
class CPUDeviceContext;
}  // namespace platform
}  // namespace paddle

Y
Yibing Liu 已提交
32 33 34 35 36 37 38 39 40 41 42 43
namespace paddle {
namespace operators {

class LabelSmoothOp : public framework::OperatorWithKernel {
 public:
  LabelSmoothOp(const std::string &type,
                const framework::VariableNameMap &inputs,
                const framework::VariableNameMap &outputs,
                const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
44 45 46 47 48 49
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      platform::errors::NotFound(
                          "The input 'X' of LabelSmoothOp is not found."));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      platform::errors::NotFound(
                          "The output 'Out' of LabelSmoothOp is not found."));
Y
Yibing Liu 已提交
50
    auto in_dims = ctx->GetInputDim("X");
51 52
    if (ctx->HasInput("PriorDist")) {
      auto noise_dims = ctx->GetInputDim("PriorDist");
53
      auto noise_numel = phi::product(noise_dims);
54 55 56 57 58 59 60 61
      PADDLE_ENFORCE_EQ(
          in_dims[in_dims.size() - 1], noise_numel,
          platform::errors::InvalidArgument(
              "The number of elements in input 'PriorDist' must be equal to "
              "the "
              "dimension of each label. But received each label's "
              "dimension=[%d], number of elements in input 'PriorDist' is [%d]",
              in_dims[in_dims.size() - 1], noise_numel));
62
    }
Y
Yibing Liu 已提交
63 64 65 66 67 68 69
    ctx->ShareLoD("X", /*->*/ "Out");
    ctx->SetOutputDim("Out", in_dims);
  }
};

class LabelSmoothOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
70
  void Make() override {
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    AddInput("X",
             "(LoDTensor) The input labels of LabelSmooth operator. This "
             "input can be batched labels in one-hot encoding or output from "
             "softmax, with shape [N x K], where N is the batch size and K is "
             "the number of classes");
    AddInput("PriorDist",
             "(Tensor, optional)"
             "The prior distribution to be added to the smoothed label. It is "
             "fixed during training and the number of elements should be equal "
             "to the dimension K of each label. Default is uniform "
             "distribution and each element will be set to 1/K if not provided "
             "in input.")
        .AsDispensable();
    AddOutput("Out",
              "(loDTensor) The smoothed label of LabelSmooth operator. It has"
              "the same shape and LoD with the Input(LoDTensor).");
Y
Yibing Liu 已提交
87 88 89 90 91 92 93
    AddAttr<float>("epsilon",
                   "(float, default 0.0f)"
                   "The smoothing parameter of LabelSmooth operator.")
        .SetDefault(0.0f);
    AddComment(R"DOC(
LabelSmooth Operator.

94 95 96 97 98 99 100 101
Label smoothing is a mechanism to regularize the classifier layer. In machine 
learning, optimizing the log-likelihood of the correct label directly may 
cause two problems. First, it may result in overfitting: if the model learns 
to assign full probability to the ground-truth label for each training example,
it is not guaranteed to generalize. Second, it encourages the differences 
between the largest logit and all others to become large, reducing the ability 
of the model to adapt. Label smoothing is proposed to encourage the model to 
be less confident, which replaces the ground-truth label $y$ with the weighted 
Y
Yibing Liu 已提交
102
sum of itself and some fixed distribution $\mu$, i.e.
103 104 105 106 107 108 109 110 111 112 113 114

$$
    \tilde{y} = (1 - \epsilon) * y + \epsilon * \mu,
$$

where $(1 - \epsilon)$ and $\epsilon$ are the weights respectively, and 
$\tilde{y}$ is the smoothed label. Usually uniform distribution is used for 
$\mu$. This change in the ground-truth label is called label-smoothing 
regularization or LSR.

See more details about label smoothing in https://arxiv.org/abs/1512.00567.

Y
Yibing Liu 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127
)DOC");
  }
};

class LabelSmoothGradOp : public framework::OperatorWithKernel {
 public:
  LabelSmoothGradOp(const std::string &type,
                    const framework::VariableNameMap &inputs,
                    const framework::VariableNameMap &outputs,
                    const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

  void InferShape(framework::InferShapeContext *ctx) const override {
S
sneaxiy 已提交
128 129 130 131 132
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
  }
};

H
hong 已提交
133 134
template <typename T>
class LabelSmoothGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
135
 public:
H
hong 已提交
136
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
137 138

 protected:
139
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
140
    op->SetType("label_smooth_grad");
H
hong 已提交
141 142 143
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
Y
Yibing Liu 已提交
144 145 146 147 148 149 150
  }
};

}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

Y
Yang Yang 已提交
151
REGISTER_OPERATOR(label_smooth, ops::LabelSmoothOp, ops::LabelSmoothOpMaker,
H
hong 已提交
152 153
                  ops::LabelSmoothGradMaker<paddle::framework::OpDesc>,
                  ops::LabelSmoothGradMaker<paddle::imperative::OpBase>);
154
REGISTER_OPERATOR(label_smooth_grad, ops::LabelSmoothGradOp);
Y
Yibing Liu 已提交
155 156 157 158 159 160 161 162
REGISTER_OP_CPU_KERNEL(
    label_smooth,
    ops::LabelSmoothKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LabelSmoothKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    label_smooth_grad,
    ops::LabelSmoothGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LabelSmoothGradKernel<paddle::platform::CPUDeviceContext, double>);