ipu_ernie_fp16_test.cc 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {

using paddle::PaddleTensor;

template <typename T>
void GetValueFromStream(std::stringstream *ss, T *t) {
  (*ss) >> (*t);
}

template <>
void GetValueFromStream<std::string>(std::stringstream *ss, std::string *t) {
  *t = ss->str();
}

// Split string to vector
template <typename T>
void Split(const std::string &line, char sep, std::vector<T> *v) {
  std::stringstream ss;
  T t;
  for (auto c : line) {
    if (c != sep) {
      ss << c;
    } else {
      GetValueFromStream<T>(&ss, &t);
      v->push_back(std::move(t));
      ss.str({});
      ss.clear();
    }
  }

  if (!ss.str().empty()) {
    GetValueFromStream<T>(&ss, &t);
    v->push_back(std::move(t));
    ss.str({});
    ss.clear();
  }
}

// Parse tensor from string
template <typename T>
bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) {
  std::vector<std::string> data;
  Split(field, ':', &data);
  if (data.size() < 2) return false;

  std::string shape_str = data[0];

  std::vector<int> shape;
  Split(shape_str, ' ', &shape);

  std::string mat_str = data[1];

  std::vector<T> mat;
  Split(mat_str, ' ', &mat);

  tensor->shape = shape;
  auto size =
      std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>()) *
      sizeof(T);
  tensor->data.Resize(size);
  std::copy(mat.begin(), mat.end(), static_cast<T *>(tensor->data.data()));
  tensor->dtype = GetPaddleDType<T>();

  return true;
}

// Parse input tensors from string
bool ParseLine(const std::string &line,
               std::vector<paddle::PaddleTensor> *tensors) {
  std::vector<std::string> fields;
  Split(line, ';', &fields);

  tensors->clear();
  tensors->reserve(4);

  int i = 0;
  auto input_name = FLAGS_ernie_large ? "eval_placeholder_" : "placeholder_";
  for (; i < 3; i++) {
    paddle::PaddleTensor temp;
    ParseTensor<int64_t>(fields[i], &temp);
    temp.name = input_name + std::to_string(i);
    tensors->push_back(temp);
  }

  // input_mask
  paddle::PaddleTensor input_mask;
  ParseTensor<float>(fields[i], &input_mask);
  // fp32 to fp16
  ConvertFP32toFP16(input_mask);
  input_mask.name = input_name + std::to_string(i);
  tensors->push_back(input_mask);

  return true;
}

bool LoadInputData(std::vector<std::vector<paddle::PaddleTensor>> *inputs,
                   int batch_size = 1) {
  if (FLAGS_infer_data.empty()) {
    LOG(ERROR) << "please set input data path";
    return false;
  }

  std::ifstream fin(FLAGS_infer_data);
  std::string line;
  int sample = 0;

  // The unit-test dataset only have 10 samples, each sample have 5 feeds.
  while (std::getline(fin, line)) {
    std::vector<paddle::PaddleTensor> feed_data;
    ParseLine(line, &feed_data);
    inputs->push_back(std::move(feed_data));
    sample++;
    if (!FLAGS_test_all_data && sample == batch_size) break;
  }
  LOG(INFO) << "number of samples: " << sample;
  return true;
}

void SetConfig(AnalysisConfig *cfg, int batch_size = 1) {
  cfg->SetModel(FLAGS_infer_model);
  // ipu_device_num, ipu_micro_batch_size, ipu_enable_pipelining
  cfg->EnableIpu(1, batch_size, false);
  // ipu_enable_fp16, ipu_replica_num, ipu_available_memory_proportion,
  // ipu_enable_half_partial
  cfg->SetIpuConfig(true, 1, 1.0, true);
}

// Compare results
TEST(Analyzer_Ernie_ipu, compare_results) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  LoadInputData(&input_slots_all);

  std::ifstream fin(FLAGS_refer_result);
  std::string line;
  std::vector<float> ref;

  while (std::getline(fin, line)) {
    Split(line, ' ', &ref);
  }

  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
      FLAGS_use_analysis);

  std::vector<PaddleTensor> outputs;
  for (size_t i = 0; i < input_slots_all.size(); i++) {
    outputs.clear();
    predictor->Run(input_slots_all[i], &outputs);

    auto output = outputs.front();
    ConvertFP16toFP32(output);
    auto outputs_size = 1;
    for (auto dim : output.shape) {
      outputs_size *= dim;
    }
    float *fp32_data = reinterpret_cast<float *>(output.data.data());
    for (size_t j = 0; j < outputs_size; ++j) {
      EXPECT_NEAR(ref[i * outputs_size + j], fp32_data[j], 5e-3);
    }
  }
}

}  // namespace inference
}  // namespace paddle