io.py 12.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import collections
import pickle
import six
import warnings

import paddle

# deprecated module import
from paddle import fluid
from paddle.fluid import core
from paddle.fluid.framework import Variable, _varbase_creator, _dygraph_tracer
C
Chen Weihang 已提交
29
from paddle.fluid.dygraph.jit import _SaveLoadConfig
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
from paddle.fluid.dygraph.io import _construct_program_holders, _construct_params_and_buffers, EXTRA_VAR_INFO_FILENAME

__all__ = [
    'save',
    'load',
]


def _build_saved_state_dict(state_dict):
    save_dict = {}
    name_table = {}
    for key, value in state_dict.items():
        if isinstance(value, (Variable, core.VarBase)):
            save_dict[key] = value.numpy()
            name_table[key] = value.name
        else:
            save_dict[key] = value
    save_dict["StructuredToParameterName@@"] = name_table

    return save_dict


def _load_state_dict_from_save_inference_model(model_path, config):
    # 1. load program desc & construct _ProgramHolder
    programs = _construct_program_holders(model_path, config.model_filename)

    # 2. load layer parameters & buffers
    with fluid.dygraph.guard():
        persistable_var_dict = _construct_params_and_buffers(
            model_path,
            programs,
            config.separate_params,
            config.params_filename,
            append_suffix=False)

        # 3. construct state_dict
        load_param_dict = dict()
        for var_name in persistable_var_dict:
            load_param_dict[var_name] = persistable_var_dict[var_name].numpy()

        # if __variables.info__ exists, we can recover structured_name
        var_info_path = os.path.join(model_path, EXTRA_VAR_INFO_FILENAME)
        if os.path.exists(var_info_path):
            with open(var_info_path, 'rb') as f:
                extra_var_info = pickle.load(f)
            structured_para_dict = dict()
            for var_name in load_param_dict:
                structured_name = extra_var_info[var_name].get(
                    'structured_name', None)
                assert structured_name is not None, "Cannot find saved variable (%s)'s structured name in saved model." % var_name
                structured_para_dict[structured_name] = load_param_dict[
                    var_name]
            load_param_dict = structured_para_dict

    return load_param_dict


def _load_state_dict_from_save_params(model_path):
    # Try to load all the files in the directory in VarBase format, 
    # the file name is used as the name of VarBase
    load_var_list = []

    # 1. load file names
    var_name_list = []
    for root, _, files in os.walk(model_path):
        for filename in files:
            file_path = os.path.join(root, filename)
            tmp_var_name = os.path.relpath(file_path, model_path)
            var_name = tmp_var_name.replace("\\", "/")
            var_name_list.append(var_name)

    # 2. create and load VarBase
    with fluid.dygraph.guard():
        for name in var_name_list:
            new_var = _varbase_creator(name=name, persistable=True)
            _dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
                attrs={'file_path': os.path.join(model_path, name)})
            load_var_list.append(new_var)

    # 3. construct state_dict
    load_param_dict = dict()
    for var in load_var_list:
        load_param_dict[var.name] = var.numpy()

    return load_param_dict


C
Chen Weihang 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
def _parse_load_config(configs):
    supported_configs = [
        'model_filename', 'params_filename', 'separate_params',
        'keep_name_table'
    ]

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.load` is not supported."
                % key)

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)
    inner_config.separate_params = configs.get('separate_params', None)
    inner_config.keep_name_table = configs.get('keep_name_table', None)

    return inner_config


143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
def save(obj, path):
    '''
    Save an object to the specified path.
    
    .. note::
        Now only supports save ``state_dict`` of Layer or Optimizer.
    
    Args:
        obj(Object) : The object to be saved.
        path(str) : The path of the object to be saved. 
          If saved in the current directory, the input path string will be used as the file name. 

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()

            emb = paddle.nn.Embedding(10, 10)
            layer_state_dict = emb.state_dict()
            paddle.save(layer_state_dict, "emb.pdparams")

            scheduler = paddle.optimizer.lr_scheduler.NoamLR(	
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            opt_state_dict = adam.state_dict()
            paddle.save(opt_state_dict, "adam.pdopt")
    '''

    # 1. input check
    if not isinstance(obj, dict):
        raise NotImplementedError(
            "Now only supports save state_dict of Layer or Optimizer, "
            "expect dict, but received %s." % type(obj))

    if len(obj) == 0:
        warnings.warn("The input state dict is empty, no need to save.")

    filename = os.path.basename(path)
    if filename == "":
        raise ValueError("The input path MUST be format of dirname/filename "
                         "[dirname\\filename in Windows system], but received "
                         "filename is empty string.")

    # 2. save object
    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)

    # TODO(chenweihang): supports save other object
    saved_obj = _build_saved_state_dict(obj)

    with open(path, 'wb') as f:
        pickle.dump(saved_obj, f, protocol=2)


C
Chen Weihang 已提交
205
def load(path, **configs):
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    '''
    Load an object can be used in paddle from specified path.

    .. note::
        Now only supports load ``state_dict`` of Layer or Optimizer.

    .. note::
        ``paddle.load`` supports loading ``state_dict`` from the result of several 
        paddle1.x save APIs in static mode, but due to some historical reasons, 
        if you load ``state_dict`` from the saved result of 
        ``paddle.static.save_inference_model/paddle.fluid.io.save_params/paddle.fluid.io.save_persistables`` , 
        the structured variable name will cannot be restored. You need to set the argument 
        ``use_structured_name=False`` when using ``Layer.set_state_dict`` later.

    Args:
        path(str) : The path to load the target object. Generally, the path is the target 
            file path, when compatible with loading the saved results of 
            ``paddle.jit.save/paddle.static.save_inference_model`` , the path is a directory. 
C
Chen Weihang 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237
        configs (dict, optional): other save configuration options for compatibility. We do not 
            recommend using these configurations, if not necessary, DO NOT use them. Default None.
            The following options are currently supported:
            (1) model_filename (string): The filename to load the translated program of target Layer.
            Default filename is :code:`__model__` . 
            (2) params_filename (string): The filename to load all persistable variables in target Layer. 
            Default file name is :code:`__variables__` .
            (3) separate_params (bool): Configure whether to load the Layer parameters from separete files.
            If True, each parameter will be loaded from a file separately, the file name is the parameter name,
            and the params_filename configuration will not take effect. Default False.
            (4) keep_name_table (bool): Configures whether keep ``structured_name -> parameter_name`` dict in 
            loaded state dict. This dict is the debugging information saved when call ``paddle.save`` . 
            It is generally only used for debugging and does not affect the actual training or inference. 
            By default, it will not be retained in ``paddle.load`` result. Default: False.
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

    Returns:
        Object(Object): a target object can be used in paddle

    Examples:
        .. code-block:: python

            import paddle
            
            paddle.disable_static()

            emb = paddle.nn.Embedding(10, 10)
            layer_state_dict = emb.state_dict()
            paddle.save(layer_state_dict, "emb.pdparams")

            scheduler = paddle.optimizer.lr_scheduler.NoamLR(	
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            opt_state_dict = adam.state_dict()
            paddle.save(opt_state_dict, "adam.pdopt")

            load_layer_state_dict = paddle.load("emb.pdparams")
            load_opt_state_dict = paddle.load("adam.pdopt")
    '''
    # 1. input check
    if not os.path.exists(path):
        error_msg = "The path `%s` does not exist."
        # if current path is a prefix, and the path.pdparams or path.pdopt
        # is exist, users may want use `paddle.load` load the result of 
        # `fluid.save_dygraph`, we raise error here for users
        params_file_path = path + ".pdparams"
        opti_file_path = path + ".pdopt"
        if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
            error_msg += " If you want to load the results saved by `fluid.save_dygraph`, " \
                "please specify the full file name, not just the file name prefix. For " \
                "example, it should be written as `paddle.load('model.pdparams')` instead of " \
                "`paddle.load('model')`."
        raise ValueError(error_msg % path)

C
Chen Weihang 已提交
279
    config = _parse_load_config(configs)
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

    # 2. load target
    load_result = None
    if os.path.isfile(path):
        # we think path is file means this file is created by paddle.save
        with open(path, 'rb') as f:
            load_result = pickle.load(f) if six.PY2 else pickle.load(
                f, encoding='latin1')

        if not config.keep_name_table and "StructuredToParameterName@@" in load_result:
            del load_result["StructuredToParameterName@@"]
    elif os.path.isdir(path):
        # we think path is directory means compatible with loading 
        # store results of static mode related save APIs

        # check whether model file exists
        if config.model_filename is None:
            model_filename = '__model__'
        else:
            model_filename = config.model_filename
        model_file_path = os.path.join(path, model_filename)

        if os.path.exists(model_file_path):
            # Load state dict by `jit.save/io.save_inference_model` save format
            # NOTE(chenweihang): [ Compatibility of save_inference_model save format ]
            # The model saved by `save_inference_model` does not completely correspond to 
            # the information required by the `state_dict` under the dygraph. 
            # `save_inference_model` not save structured name, we need to remind 
            # the user to configure the `use_structured_name` argument when `set_state_dict`
            # NOTE(chenweihang): `jit.save` doesn't save optimizer state 
            load_result = _load_state_dict_from_save_inference_model(path,
                                                                     config)
        else:
            # load state dict by `io.save_params/persistables` save format
            # TODO(chenweihang): [ Now only supports loading parameters seperately ]
            # If users save all parameters as one file, the [ variable.name -> variable ]
            # mapping info will lost, so users need to give variable list, but users build 
            # variable list in dygraph mode is difficult, we recommend users to use
            # paddle.static.load_program_state in this case
            load_result = _load_state_dict_from_save_params(path)
    else:
        raise ValueError(
            "Unsupported path format, now only supports file or directory.")

    return load_result