io.py 79.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
Y
Yang Zhang 已提交
22
import pickle
H
hong 已提交
23
import contextlib
24
from functools import reduce
25

H
hong 已提交
26 27
import numpy as np

28 29 30
import paddle
import paddle.reader
from paddle.reader import *
31
from paddle.fluid import layers
H
hong 已提交
32
from paddle.fluid.executor import Executor, global_scope
33
from paddle.fluid.evaluator import Evaluator
T
tangwei12 已提交
34
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, \
35
    program_guard, dygraph_not_support
36
from .wrapped_decorator import signature_safe_contextmanager
T
tangwei12 已提交
37
from paddle.fluid.compiler import CompiledProgram
38
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
39
from . import reader
40
from . import unique_name
S
sneaxiy 已提交
41
from .reader import *
42 43
from . import dataloader
from .dataloader import *
K
fix bug  
Kexin Zhao 已提交
44
from . import core
45
from .. import compat as cpt
46

47 48
batch = paddle.batch

49
__all__ = [
50 51 52 53 54 55 56 57 58 59 60 61 62
    'save_vars',
    'save_params',
    'save_persistables',
    'load_vars',
    'load_params',
    'load_persistables',
    'save_inference_model',
    'load_inference_model',
    'batch',
    'save',
    'load',
    'load_program_state',
    'set_program_state',
H
hong 已提交
63 64
    'get_program_parameter',
    'get_program_persistable_vars',
65
] + reader.__all__ + paddle.reader.__all__
66

67 68
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
69

70 71

def is_parameter(var):
F
fengjiayi 已提交
72 73
    """
    Check whether the given variable is an instance of Parameter.
74 75

    Args:
F
fengjiayi 已提交
76
        var(Variable): The variable to be checked.
77 78

    Returns:
F
fengjiayi 已提交
79 80 81 82 83 84
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

85
            import paddle.fluid as fluid
F
fengjiayi 已提交
86 87
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
88
    """
89 90 91 92
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

106
            import paddle.fluid as fluid
107
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
108 109
            res = fluid.io.is_persistable(param)
    """
110
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
111 112
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
113
        return False
114 115 116
    return var.persistable


H
hong 已提交
117
def is_belong_to_optimizer(var):
118
    if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
119 120 121
        return is_persistable(var)

    return False
H
hong 已提交
122 123


124
@dygraph_not_support
H
hong 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
def get_program_parameter(program):
    """
    Get all the parameters from Program.

    Args:
        var(Program): The Program to get parameters

    Returns:
        list: The list contains all parameters in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_parameter(  fluid.default_main_program() )
    """
    return list(filter(is_parameter, program.list_vars()))


147
@dygraph_not_support
H
hong 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
def get_program_persistable_vars(program):
    """
    Get all the persistable vars from Program.

    Args:
        var(Program): The Program to get persistable vars

    Returns:
        list: The list contains all persistable vars in the program

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            data = fluid.data(name="img", shape=[64, 784])
            w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
            b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
            list_para  = fluid.io.get_program_persistable_vars(  fluid.default_main_program() )
    """
    return list(filter(is_persistable, program.list_vars()))


170 171
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
187 188


189
@signature_safe_contextmanager
H
hong 已提交
190 191 192 193 194 195 196 197 198 199
def _load_program_scope(main=None, startup=None, scope=None):
    prog = main if main else paddle.fluid.Program()
    startup_prog = startup if startup else paddle.fluid.Program()
    scope = scope if scope else paddle.fluid.core.Scope()
    with paddle.fluid.scope_guard(scope):
        with paddle.fluid.program_guard(prog, startup_prog):
            with paddle.fluid.unique_name.guard():
                yield


C
chengduo 已提交
200 201 202 203 204 205
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
206 207 208
            raise TypeError(
                "The type of input main_program is invalid, expected tyep is Program, but received None"
            )
C
chengduo 已提交
209 210 211
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
212 213 214
        raise TypeError(
            "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
            % type(main_program))
C
chengduo 已提交
215 216 217
    return main_program


218
@dygraph_not_support
219 220 221 222 223
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
224
              filename=None):
225
    """
226
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
227

228 229 230
    There are two ways to specify the variables to be saved: set variables in 
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
231

232
    The `dirname` is used to specify the folder where to save variables.
T
tianshuo78520a 已提交
233
    If you prefer to save variables in separate files in the `dirname` folder,
234
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
235
    use `filename` to specify it.
236

F
fengjiayi 已提交
237 238
    Args:
        executor(Executor): The executor to run for saving variables.
239 240
        dirname(str, optional): The folder where to save variables.
                            When you need to save the parameter to the memory, set it to None.
241
        main_program(Program, optional): The program whose variables will be saved.
242
                                    If it is None, the default main program will
F
fengjiayi 已提交
243 244
                                    be used automatically.
                                    Default: None
245 246 247 248 249 250 251 252
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
                                       `predicate(variable) == True`. 
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
                                 use `filename` to specify it. Otherwise, let `filename` be None. 
                                 Default: None
F
fengjiayi 已提交
253 254

    Returns:
255 256
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
257 258 259 260 261 262 263

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

264
            import paddle.fluid as fluid
265

266 267 268 269 270 271 272 273 274 275 276
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
277

278
            # The first usage: use `vars` to set the saved variables.
279 280
            var_list = [w, b]
            path = "./my_paddle_vars"
281
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
282 283 284 285 286 287 288 289 290 291
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
292
    """
293 294 295 296
    save_to_memory = False
    if dirname is None and filename is None:
        save_to_memory = True

C
chengduo 已提交
297
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
298

299
    if vars is None:
300
        return save_vars(
301
            executor,
302
            main_program=main_program,
303
            dirname=dirname,
304
            vars=list(filter(predicate, main_program.list_vars())),
305
            filename=filename)
306
    else:
307
        params_var_name = unique_name.generate("saved_params")
308 309 310 311 312 313 314
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

315 316
        save_program = Program()
        save_block = save_program.global_block()
317 318

        save_var_map = {}
319
        for each_var in vars:
320 321 322
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
323
            new_var = _clone_var_in_block_(save_block, each_var)
324 325 326
            if filename is None and save_to_memory is False:
                save_file_path = os.path.join(
                    os.path.normpath(dirname), new_var.name)
327 328 329 330
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
331
                    attrs={'file_path': os.path.normpath(save_file_path)})
332 333 334
            else:
                save_var_map[new_var.name] = new_var

335
        if filename is not None or save_to_memory:
336 337 338 339
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

340 341 342 343 344 345 346
            save_path = str()
            if save_to_memory is False:
                save_path = os.path.join(os.path.normpath(dirname), filename)

            saved_params = save_block.create_var(
                type=core.VarDesc.VarType.RAW, name=params_var_name)
            saved_params.desc.set_persistable(True)
347
            save_block.append_op(
348 349
                type='save_combine',
                inputs={'X': save_var_list},
350 351 352 353 354
                outputs={'Y': saved_params},
                attrs={
                    'file_path': save_path,
                    'save_to_memory': save_to_memory
                })
355

356 357 358 359
        #NOTE(zhiqiu): save op will add variable kLookupTablePath in save_program.desc,
        # which leads to diff on save_program and its desc. Call _sync_with_cpp
        # to keep consistency.
        save_program._sync_with_cpp()
360
        executor.run(save_program)
361 362
        if save_to_memory:
            return global_scope().find_var(params_var_name).get_bytes()
363 364


365
@dygraph_not_support
366
def save_params(executor, dirname, main_program=None, filename=None):
367
    """
G
guofei 已提交
368 369 370
    This operator saves all parameters from the :code:`main_program` to
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
371

G
guofei 已提交
372 373 374
    Use the :code:`dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set :code:`filename` None; if you would
    like to save all parameters in a single file, use :code:`filename` to specify
F
fengjiayi 已提交
375 376
    the file name.

G
guofei 已提交
377 378 379 380 381 382 383 384 385 386
    Note: 
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you can NOT save 
        and continue your training just by :ref:`api_fluid_io_save_params`
        and :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead. 
        
        If you want to save your model for the inference, please use the 
        :ref:`api_fluid_io_save_inference_model`. You can refer to
        :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
387 388

    Args:
G
guofei 已提交
389 390
        executor(Executor): The executor to run for saving parameters, You can 
                            refer to :ref:`api_guide_executor_en`.
391 392
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
G
guofei 已提交
393 394 395 396 397 398 399 400 401 402
        main_program(Program, optional): The program whose parameters will be
                                         saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more 
                                         details. If it is None, the default main
                                         program will be used.
                                         Default: None
        filename(str, optional): The file to save all parameters. If you prefer
                                 to save parameters in different files, set it
                                 to None.
                                 Default: None
F
fengjiayi 已提交
403 404

    Returns:
405 406
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
407 408 409 410

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
411
            import paddle.fluid as fluid
G
guofei 已提交
412 413 414 415 416 417 418 419 420 421
           
            params_path = "./my_paddle_model"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
    
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
            
F
fengjiayi 已提交
422
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
423 424 425 426
            exe.run(fluid.default_startup_program())
            fluid.io.save_params(executor=exe, dirname=params_path)
            # The parameters weights and bias of the fc layer in the network are going to 
            # be saved in different files in the path "./my_paddle_model" 
427
    """
428
    return save_vars(
429 430
        executor,
        dirname=dirname,
431
        main_program=main_program,
432
        vars=None,
433
        predicate=is_parameter,
434
        filename=filename)
435 436


437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

459
            import paddle.fluid as fluid
460 461 462 463 464 465 466 467 468 469
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
T
tianshuo78520a 已提交
470
        receive params on pserver through rpc.
471 472 473 474 475 476 477 478 479 480
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
T
tangwei12 已提交
481 482 483 484 485 486 487
            origin = remote_params[0].origin
            is_slice = remote_params[0].is_slice

            slices = [None] * len(remote_params)
            slice_varnames = [None] * len(remote_params)
            remote_varnames = [None] * len(remote_params)
            endpoints = [None] * len(remote_params)
488 489 490

            for idx, optimizer in enumerate(remote_params):
                block_id = optimizer.block_id
T
tangwei12 已提交
491
                slice = optimizer.slice
492 493 494
                endpoint = optimizer.endpoint

                index = block_id if is_slice else idx
T
tangwei12 已提交
495 496 497
                slices[index] = slice
                slice_varnames[index] = "{}.slice.{}".format(slice.name, idx)
                remote_varnames[index] = slice.name
498 499
                endpoints[index] = endpoint

T
tangwei12 已提交
500 501 502 503 504
            slice_shapes = []
            for slice in slices:
                tmp = [str(dim) for dim in slice.shape]
                slice_shapes.append(",".join(tmp))

505
            block.append_op(
T
tangwei12 已提交
506 507 508 509 510 511 512 513 514 515 516
                type='recv_save',
                attrs={
                    "trainer_id": 0,
                    "shape": origin.shape,
                    "slice_shapes": slice_shapes,
                    "slice_varnames": slice_varnames,
                    "remote_varnames": remote_varnames,
                    "endpoints": endpoints,
                    "file_path": os.path.join(dirname, origin.name)
                })

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
T
tangwei12 已提交
546 547
                    var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                    var.desc.type() == core.VarDesc.VarType.READER:
548 549 550 551 552 553
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
554
        raise TypeError("'main_program' should be an instance of Program.")
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


588
@dygraph_not_support
589
def save_persistables(executor, dirname, main_program=None, filename=None):
590
    """
G
guofei 已提交
591 592 593 594 595
    This operator saves all persistable variables from :code:`main_program` to 
    the folder :code:`dirname` or file :code:`filename`. You can refer to 
    :ref:`api_guide_model_save_reader_en` for more details. And then
    saves these persistables variables to the folder :code:`dirname` or file 
    :code:`filename`. 
F
fengjiayi 已提交
596

G
guofei 已提交
597
    The :code:`dirname` is used to specify the folder where persistable variables
598
    are going to be saved. If you would like to save variables in separate
G
guofei 已提交
599 600
    files, set :code:`filename` None; if you would like to save all variables in a
    single file, use :code:`filename` to specify the file name.
F
fengjiayi 已提交
601 602 603

    Args:
        executor(Executor): The executor to run for saving persistable variables.
G
guofei 已提交
604 605
                            You can refer to :ref:`api_guide_executor_en` for 
                            more details.
606 607 608
        dirname(str, optional): The saving directory path.
                            When you need to save the parameter to the memory, set it to None.
        main_program(Program, optional): The program whose persistbale variables will
G
guofei 已提交
609 610 611 612 613 614 615 616
                                         be saved. You can refer to 
                                         :ref:`api_guide_Program_en` for more details.
                                         If it is None, the default main program will 
                                         be used.
                                         Default: None.
        filename(str, optional): The file to save all variables. If you prefer to
                                 save variables in different files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
617 618

    Returns:
619 620
        str: When saving parameters to a file, returns None.
             When saving parameters to memory, returns a binary string containing parameters.
F
fengjiayi 已提交
621 622 623 624

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
625
            import paddle.fluid as fluid
G
guofei 已提交
626 627 628 629 630 631 632 633 634 635
        
            dir_path = "./my_paddle_model"
            file_name = "persistables"
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
           
            predict = fluid.layers.fc(input=image, size=10, act='softmax')
            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)
F
fengjiayi 已提交
636
            exe = fluid.Executor(fluid.CPUPlace())
G
guofei 已提交
637 638 639 640 641
            exe.run(fluid.default_startup_program())
            fluid.io.save_persistables(executor=exe, dirname=dir_path, filename=file_name)
            # The persistables variables weights and bias in the fc layer of the network 
            # are going to be saved in the same file named "persistables" in the path
            # "./my_paddle_model"
642
    """
643
    if main_program and main_program._is_distributed:
644
        return _save_distributed_persistables(
645 646
            executor, dirname=dirname, main_program=main_program)
    else:
647
        return save_vars(
648 649 650 651 652 653
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
654 655


656
@dygraph_not_support
657 658 659 660 661
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
662
              filename=None):
663
    """
664
    This API loads variables from files by executor.
F
fengjiayi 已提交
665

666 667 668 669
    There are two ways to specify the variables to be loaded: the first way, set
    variables in a list and assign it to the `vars`; the second way, use the 
    `predicate` function to select variables that make `predicate(variable) == True`. 
    The first way has a higher priority.
F
fengjiayi 已提交
670

671
    The `dirname` is used to specify the folder where to load variables.
672
    If variables were saved in separate files in the folder `dirname`,
673
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
674
    use `filename` to specify it.
675

F
fengjiayi 已提交
676 677
    Args:
        executor(Executor): The executor to run for loading variables.
678 679
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
680
                                    If it is None, the default main program will
F
fengjiayi 已提交
681 682
                                    be used automatically.
                                    Default: None
683
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
684
                                   Default: None
685 686 687 688 689 690
        predicate(function, optional): The function selects variables that make 
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
691 692 693 694 695 696 697 698 699 700

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

701
            import paddle.fluid as fluid
702

703 704 705 706 707 708 709 710 711 712 713
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
714

715 716 717 718 719 720 721 722 723 724 725
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
726
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
727 728 729
            def name_has_fc(var):
                res = "fc" in var.name
                return res
730 731 732
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
733
                               vars=None, predicate=name_has_fc)
734 735
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
736

737
    """
738 739 740 741 742
    vars_from_memory = False
    if dirname is not None:
        dirname = os.path.normpath(dirname)
    else:
        vars_from_memory = True
T
tangwei12 已提交
743

744
    if vars is None:
745
        if main_program is None:
Y
Yu Yang 已提交
746
            main_program = default_main_program()
747
        if not isinstance(main_program, Program):
748 749 750
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
751 752 753

        load_vars(
            executor,
754
            dirname=dirname,
T
tangwei12 已提交
755
            main_program=main_program,
756
            vars=list(filter(predicate, main_program.list_vars())),
757
            filename=filename)
758 759 760
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
761

762 763
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
764

765
        if not isinstance(main_program, Program):
766 767 768
            raise TypeError(
                "The type of input main_program is invalid, expected type is fluid.Program, but received %s"
                % type(main_program))
769

T
tangwei12 已提交
770
        # save origin param shape
H
hong 已提交
771
        orig_para_shape = {}
772
        load_var_map = {}
773 774
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
775 776
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
777 778

            if isinstance(each_var, Parameter):
779 780
                orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape(
                ))
781
            new_var = _clone_var_in_block_(load_block, each_var)
782
            if filename is None:
783 784 785 786
                if dirname is None:
                    raise ValueError(
                        "The directory path and params cannot be None at the same time."
                    )
787 788 789 790
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
791
                    attrs={'file_path': os.path.join(dirname, new_var.name)})
792 793 794
            else:
                load_var_map[new_var.name] = new_var

795
        if filename is not None:
796 797 798 799
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

800 801 802
            if vars_from_memory is False:
                filename = os.path.join(dirname, filename)

803
            load_block.append_op(
804
                type='load_combine',
805
                inputs={},
806
                outputs={"Out": load_var_list},
807 808 809 810
                attrs={
                    'file_path': filename,
                    'model_from_memory': vars_from_memory
                })
811 812
        executor.run(load_prog)

T
tangwei12 已提交
813
        # check var shape
H
hong 已提交
814 815 816 817 818 819
        for each_var in vars:
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
820
            assert each_var.name in orig_para_shape, each_var.name + "MUST in var list"
H
hong 已提交
821 822 823
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
824
                    "Variable's shape does not match, the Program requires a parameter with the shape of ({}), "
H
hong 已提交
825 826 827
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

828

829
@dygraph_not_support
830
def load_params(executor, dirname, main_program=None, filename=None):
831
    """
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
851 852

    Args:
853 854
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
855
        dirname(str): The directory path.
856 857 858 859 860 861 862 863
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
864 865 866 867 868 869 870

    Returns:
        None

    Examples:
        .. code-block:: python

871
            import paddle.fluid as fluid
872

F
fengjiayi 已提交
873 874 875
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
876
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
877
                                main_program=None)
878 879
    """
    load_vars(
880 881 882
        executor,
        dirname=dirname,
        main_program=main_program,
883
        predicate=is_parameter,
884
        filename=filename)
885 886


887
@dygraph_not_support
888
def load_persistables(executor, dirname, main_program=None, filename=None):
889
    """
890 891
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
T
tianshuo78520a 已提交
892
    directory ``dirname`` or the file ``filename``.
F
fengjiayi 已提交
893

894 895 896 897
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
898 899

    Args:
900 901
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
902
        dirname(str): The directory path.
T
tianshuo78520a 已提交
903
        main_program(Program, optional): The program whose persistable variables will
904 905 906 907 908 909 910
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
911 912 913 914 915 916 917

    Returns:
        None

    Examples:
        .. code-block:: python

918
            import paddle.fluid as fluid
919

F
fengjiayi 已提交
920 921 922
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
923
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
924
                                       main_program=None)
925
    """
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

957
            import paddle.fluid as fluid
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

                load_block.append_op(
T
tangwei12 已提交
991 992 993 994 995 996 997 998
                    type='load',
                    inputs={},
                    outputs={'Out': [slice]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name),
                        'seek': offset,
                        'shape': slice.shape
                    })
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
1021
        raise TypeError("'main_program' should be an instance of Program.")
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
1036 1037


1038 1039 1040
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
1041 1042 1043
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
1044 1045
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
1046 1047 1048
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
1049

1050
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
1051
        out = global_block.var(name)
W
Wu Yi 已提交
1052
        global_block._prepend_op(
K
Kexin Zhao 已提交
1053 1054
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
1055
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
1056 1057 1058
            attrs={'col': i})


1059 1060 1061
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
1062 1063
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
1064 1065 1066
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
1067

1068
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
1069 1070 1071 1072 1073 1074 1075
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


1076
@dygraph_not_support
1077 1078 1079 1080
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
1081
                         main_program=None,
1082
                         model_filename=None,
1083
                         params_filename=None,
T
tangwei12 已提交
1084 1085
                         export_for_deployment=True,
                         program_only=False):
1086
    """
F
fengjiayi 已提交
1087
    Prune the given `main_program` to build a new program especially for inference,
G
guofei 已提交
1088
    and then save it and all related parameters to given `dirname` .
1089
    If you just want to save parameters of your trained model, please use the
G
guofei 已提交
1090 1091
    :ref:`api_fluid_io_save_params` . You can refer to :ref:`api_guide_model_save_reader_en`
    for more details.
1092

G
guofei 已提交
1093 1094 1095 1096 1097
    Note:
        The :code:`dirname` is used to specify the folder where inference model 
        structure and parameters are going to be saved. If you would like to save params of
        Program in separate files, set `params_filename` None; if you would like to save all 
        params of Program in a single file, use `params_filename` to specify the file name.
F
fengjiayi 已提交
1098 1099 1100

    Args:
        dirname(str): The directory path to save the inference model.
T
tianshuo78520a 已提交
1101
        feeded_var_names(list[str]): list of string. Names of variables that need to be fed
G
guofei 已提交
1102 1103 1104 1105 1106 1107
                                     data during inference.
        target_vars(list[Variable]): list of Variable. Variables from which we can get 
                                     inference results.
        executor(Executor): The executor that saves the inference model. You can refer 
                            to :ref:`api_guide_executor_en` for more details.
        main_program(Program, optional): The original program, which will be pruned to
T
tianshuo78520a 已提交
1108
                                         build the inference model. If is set None,
G
guofei 已提交
1109 1110 1111
                                         the global default :code:`_main_program_` will be used.
                                         Default: None.
        model_filename(str, optional): The name of file to save the inference program
T
tianshuo78520a 已提交
1112
                                       itself. If is set None, a default filename
G
guofei 已提交
1113 1114
                                       :code:`__model__` will be used.
        params_filename(str, optional): The name of file to save all related parameters.
T
tianshuo78520a 已提交
1115
                                        If it is set None, parameters will be saved
G
guofei 已提交
1116
                                        in separate files .
X
Xin Pan 已提交
1117 1118 1119 1120 1121
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
G
guofei 已提交
1122 1123 1124 1125
                                     Default: True.
        program_only(bool, optional): If True, It will save inference program only, and do not 
                                      save params of Program.
                                      Default: False.
1126

F
fengjiayi 已提交
1127
    Returns:
G
guofei 已提交
1128 1129 1130 1131
        The fetch variables' name list

     Return Type:
        list
F
fengjiayi 已提交
1132 1133

    Raises:
G
guofei 已提交
1134 1135
        ValueError: If `feed_var_names` is not a list of basestring, an exception is thrown.
        ValueError: If `target_vars` is not a list of Variable, an exception is thrown.
F
fengjiayi 已提交
1136 1137 1138

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1139

1140 1141
            import paddle.fluid as fluid

F
fengjiayi 已提交
1142 1143
            path = "./infer_model"

T
tianshuo78520a 已提交
1144
            # User defined network, here a softmax regession example
G
guofei 已提交
1145 1146
            image = fluid.data(name='img', shape=[None, 28, 28], dtype='float32')
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

G
guofei 已提交
1164 1165 1166
            # In this example, the save_inference_mode inference will prune the default
            # main program according to the network's input node (img) and output node(predict). 
            # The pruned inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1167
            # and parameters are going to be saved in separate files under folder
1168
            # "./infer_model".
1169 1170

    """
M
minqiyang 已提交
1171
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1172
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1173
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1174
        if len(feeded_var_names) > 0:
1175
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1176
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1177
                    isinstance(name, six.string_types)
1178
                    for name in feeded_var_names)):
M
minqiyang 已提交
1179
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1180 1181

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1182
        target_vars = [target_vars]
X
Xin Pan 已提交
1183
    elif export_for_deployment:
1184 1185
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1186 1187
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1188
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1189

1190 1191 1192
    # remind user to set auc_states to zeros if the program contains auc op 
    all_ops = main_program.global_block().ops
    for op in all_ops:
1193 1194 1195
        # clear device of Op
        device_attr_name = core.op_proto_and_checker_maker.kOpDeviceAttrName()
        op._set_attr(device_attr_name, "")
1196 1197 1198 1199 1200 1201
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1202 1203 1204 1205 1206
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1207
        for i, var in enumerate(target_vars):
1208
            if isinstance(var, Variable):
F
flame 已提交
1209 1210 1211
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1212
        target_vars = uniq_target_vars
F
flame 已提交
1213
    target_var_name_list = [var.name for var in target_vars]
1214

1215
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1216
    save_dirname = dirname
1217
    try:
L
lujun 已提交
1218 1219
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1220 1221 1222 1223
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1224 1225 1226 1227
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1228
    model_basename = os.path.join(save_dirname, model_basename)
1229

X
Xin Pan 已提交
1230 1231 1232 1233
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1234 1235 1236

    origin_program = main_program.clone()

X
Xin Pan 已提交
1237
    if export_for_deployment:
X
Xin Pan 已提交
1238 1239
        main_program = main_program.clone()
        global_block = main_program.global_block()
1240
        need_to_remove_op_index = []
X
Xin Pan 已提交
1241 1242 1243
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1244 1245 1246 1247 1248
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1249
        main_program.desc.flush()
X
Xin Pan 已提交
1250

1251 1252
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1253
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1254 1255
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1256 1257 1258
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1259 1260
        main_program.desc._set_version()
        paddle.fluid.core.save_op_compatible_info(main_program.desc)
X
Xin Pan 已提交
1261 1262
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1263 1264 1265
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1266 1267
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1268

T
tangwei12 已提交
1269 1270 1271 1272 1273 1274
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1275 1276
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1277 1278
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1279

L
lujun 已提交
1280
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1281
    return target_var_name_list
X
fix  
Xin Pan 已提交
1282

1283

1284
@dygraph_not_support
1285 1286 1287
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1288 1289
                         params_filename=None,
                         pserver_endpoints=None):
1290
    """
1291 1292 1293
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1294
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1295

F
fengjiayi 已提交
1296
    Args:
1297 1298 1299
        dirname(str): One of the following:
          - The given directory path.
          - Set to None when reading the model from memory.
F
fengjiayi 已提交
1300
        executor(Executor): The executor to run for loading inference model.
1301
                            See :ref:`api_guide_executor_en` for more details about it.
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
        model_filename(str, optional): One of the following:
          - The name of file to load the inference program.
          - If it is None, the default filename ``__model__`` will be used.
          - When ``dirname`` is ``None``, it must be set to a string containing model.
          Default: ``None``.
        params_filename(str, optional): It is only used for the case that all
            parameters were saved in a single binary file. One of the following:
          - The name of file to load all parameters.  
          - When ``dirname`` is ``None``, it must be set to a string containing all the parameters.
          - If parameters were saved in separate files, set it as ``None``.
            Default: ``None``.
1313 1314 1315 1316

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1317
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1318 1319

    Returns:
1320
        list: The return of this API is a list with three elements:
1321
        (program, feed_target_names, fetch_targets). The `program` is a
1322 1323 1324 1325 1326
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1327 1328 1329 1330 1331 1332 1333

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1334 1335
            import paddle.fluid as fluid
            import numpy as np
1336 1337

            # Build the model
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1349 1350

            # Save the inference model
F
fengjiayi 已提交
1351
            path = "./infer_model"
1352 1353
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1354 1355 1356

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1357 1358
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1359
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1360 1361 1362 1363
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1364 1365 1366
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1367
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1368
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1369 1370
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1371
                                              pserver_endpoints=endpoints))
1372

1373
            # In this example, the inference program was saved in the file
1374
            # "./infer_model/__model__" and parameters were saved in
1375 1376 1377 1378
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1379
    """
1380 1381 1382 1383
    load_from_memory = False
    if dirname is not None:
        load_dirname = os.path.normpath(dirname)
        if not os.path.isdir(load_dirname):
1384
            raise ValueError("There is no directory named '%s'" % dirname)
1385

1386 1387
        if model_filename is None:
            model_filename = '__model__'
1388

1389 1390
        model_filename = os.path.join(load_dirname,
                                      os.path.basename(model_filename))
1391

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
        if params_filename is not None:
            params_filename = os.path.basename(params_filename)

        with open(model_filename, "rb") as f:
            program_desc_str = f.read()
    else:
        load_from_memory = True
        if params_filename is None:
            raise ValueError(
                "The path of params cannot be None when the directory path is None."
            )
        load_dirname = dirname
        program_desc_str = model_filename
        params_filename = params_filename
1406

1407
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1408
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1409 1410 1411
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1412
    load_persistables(executor, load_dirname, program, params_filename)
1413

T
tangwei12 已提交
1414
    if pserver_endpoints:
T
tangwei12 已提交
1415
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1416

1417 1418
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1419 1420 1421 1422 1423
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1424 1425


T
tangwei12 已提交
1426 1427 1428
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1429 1430
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1431
    program._sync_with_cpp()
T
tangwei12 已提交
1432
    return program
T
tangwei12 已提交
1433 1434


X
xuwei06 已提交
1435 1436
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1448

F
fengjiayi 已提交
1449 1450
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1451

1452
            import paddle.fluid as fluid
F
fengjiayi 已提交
1453 1454 1455
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1456

X
xuwei06 已提交
1457
    """
1458
    assert is_parameter(para), "The input variable is not parameter."
X
xuwei06 已提交
1459

X
xuwei06 已提交
1460 1461 1462 1463 1464 1465 1466 1467
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1468
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1469

F
fengjiayi 已提交
1470 1471 1472 1473 1474 1475 1476
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1477

F
fengjiayi 已提交
1478 1479
    Returns:
        numpy.array: The parameter's values.
1480

F
fengjiayi 已提交
1481 1482 1483
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
T
tianshuo78520a 已提交
1484
        AssertionError: If there is a variable named `name` in the
F
fengjiayi 已提交
1485
                        given program but it is not a Parameter.
1486

F
fengjiayi 已提交
1487 1488 1489
    Examples:
        .. code-block:: python

1490
            import paddle.fluid as fluid
F
fengjiayi 已提交
1491 1492
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1493 1494
    """
    if program is None:
Y
Yu Yang 已提交
1495
        program = default_main_program()
X
xuwei06 已提交
1496 1497
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1575 1576


1577
@dygraph_not_support
H
hong 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
def save(program, model_path):
    """
    This function save parameters, optimizer information and network description to  model_path.

    The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams".
    The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated).
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
    
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
1605
        "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received model_path is empty string."
H
hong 已提交
1606

1607 1608 1609 1610
    dir_name = os.path.dirname(model_path)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

Y
Yang Zhang 已提交
1611 1612 1613 1614
    def get_tensor(var):
        t = global_scope().find_var(var.name).get_tensor()
        return np.array(t)

H
hong 已提交
1615
    parameter_list = list(filter(is_parameter, program.list_vars()))
Y
Yang Zhang 已提交
1616 1617
    param_dict = {p.name: get_tensor(p) for p in parameter_list}
    with open(model_path + ".pdparams", 'wb') as f:
1618
        pickle.dump(param_dict, f, protocol=2)
H
hong 已提交
1619 1620 1621 1622

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

Y
Yang Zhang 已提交
1623 1624
    opt_dict = {p.name: get_tensor(p) for p in optimizer_var_list}
    with open(model_path + ".pdopt", 'wb') as f:
1625
        pickle.dump(opt_dict, f, protocol=2)
H
hong 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
    paddle.fluid.core.save_op_compatible_info(program.desc)

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


1636
@dygraph_not_support
H
hong 已提交
1637
def load(program, model_path, executor=None, var_list=None):
H
hong 已提交
1638
    """
H
hong 已提交
1639
    This function get parameters and optimizer information from program, and then get corresponding value from file.
1640
    An exception will throw if shape or dtype of the parameters is not match.
H
hong 已提交
1641

H
hong 已提交
1642 1643 1644 1645
    This function can also load model file saved with [ save_params, save_persistables, save_vars ]. 
    var_list can not be None  when load single model file 
    ( filename is not None When save_params, save_persistables or save_vars is called ).

H
hong 已提交
1646
    Args: 
1647 1648 1649 1650
        program(Program): The program will be loaded
        model_path(str): The file prefix store the program
        executor(Executor, optional): The executor used for initialize the parameter 
                                      When startup program is not run.
H
hong 已提交
1651 1652 1653
        var_list(list, optional): The variable list to load single model file saved with 
                                  [ save_params, save_persistables, save_vars ]. 
                                  Default: None
H
hong 已提交
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669

    Returns:
        None
        
     Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

            fluid.load( prog, "./temp")

    """

1670 1671
    assert executor is None or isinstance(executor, Executor)

H
hong 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"

    if not os.path.exists(parameter_file_name):
        # model file save by fluid.save not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
        _logger.warning(
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))
        if executor is None:
            raise ValueError(
                "executor is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
            )
        if os.path.isdir(model_path):
            binary_file_set = set()
            for root, dirs, files in os.walk(model_path, topdown=False):
                for f in files:
                    binary_file_set.add(
                        os.path.join(root, f).replace("\\", "/"))
            program_var_list = list(program.list_vars())
            loaded_var_list = []
            for var in program_var_list:
                var_path = os.path.join(model_path, var.name).replace("\\", "/")
                if var_path in binary_file_set:
                    loaded_var_list.append(var)
                    binary_file_set.remove(var_path)
            if len(binary_file_set) > 0:
                unused_var_list = " ".join(list(binary_file_set))
                _logger.warning("variable file [ %s ] not used" %
                                (" ".join(list(binary_file_set))))
            try:
                load_vars(
                    executor=executor, dirname=model_path, vars=loaded_var_list)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError(
1717
                    "Failed to load model file, please make sure model file is saved with the "
H
hong 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
                    "following APIs: save_params, save_persistables, save_vars")

            return
        elif os.path.isfile(model_path):
            if var_list == None:
                raise ValueError(
                    "var_list is required when loading model file saved with [ save_params, save_persistables, save_vars ]"
                )
            program_var_list = program.list_vars()
            program_var_name_set = set([var.name for var in program_var_list])

            # check all the variable inlcuded in program
            for var in var_list:
                if var.name not in program_var_name_set:
                    raise LookupError(
1733
                        "loaded var [{}] is not in program variable list")
H
hong 已提交
1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750

            dir_name, file_name = os.path.split(model_path)
            try:
                load_vars(
                    executor=executor,
                    dirname=dir_name,
                    vars=var_list,
                    filename=file_name)
            except RuntimeError as e:
                _logger.error(e)
                raise e
            except:
                raise RuntimeError( "Failed to load model file , please make sure model file is saved with the " \
                                    "the following APIs: [ save_params, save_persistables, save_vars ]. " \
                                    "When these API called, filename CANNOT be None")

            return
Y
Yang Zhang 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764

    def set_var(var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = paddle.fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = paddle.fluid.CUDAPinnedPlace()
        else:
            p = paddle.fluid.core.Place()
            p.set_place(t._place())
            place = paddle.fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)
H
hong 已提交
1765 1766

    parameter_list = list(filter(is_parameter, program.list_vars()))
1767 1768 1769 1770 1771

    if executor:
        paddle.fluid.core._create_loaded_parameter(parameter_list,
                                                   global_scope(),
                                                   executor._default_executor)
Y
Yang Zhang 已提交
1772
    with open(parameter_file_name, 'rb') as f:
1773
        load_dict = pickle.load(f) if six.PY2 else pickle.load(
1774
            f, encoding='latin1')
Y
Yang Zhang 已提交
1775 1776 1777 1778 1779
    for v in parameter_list:
        assert v.name in load_dict, \
            "Can not find [{}] in model file [{}]".format(
                v.name, parameter_file_name)
        set_var(v, load_dict[v.name])
H
hong 已提交
1780 1781 1782 1783 1784

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
H
hong 已提交
1785
        opt_file_name = model_prefix + ".pdopt"
H
hong 已提交
1786
        assert os.path.exists(opt_file_name), \
T
tangwei12 已提交
1787
            "Optimizer file [{}] not exits".format(opt_file_name)
1788 1789 1790 1791

        if executor:
            paddle.fluid.core._create_loaded_parameter(
                optimizer_var_list, global_scope(), executor._default_executor)
Y
Yang Zhang 已提交
1792 1793

        with open(opt_file_name, 'rb') as f:
1794
            load_dict = pickle.load(f) if six.PY2 else pickle.load(
1795
                f, encoding='latin1')
Y
Yang Zhang 已提交
1796 1797 1798 1799 1800
        for v in optimizer_var_list:
            assert v.name in load_dict, \
                "Can not find [{}] in model file [{}]".format(
                    v.name, opt_file_name)
            set_var(v, load_dict[v.name])
1801 1802


1803
@dygraph_not_support
H
hong 已提交
1804
def load_program_state(model_path, var_list=None):
1805 1806 1807 1808 1809
    """
    Load program state from local file
    
    Args:
        model_path(str): The file prefix store the program
H
hong 已提交
1810 1811 1812 1813 1814
        var_list(list, optional): The variable list to load saved with 
                                  [ save_params, save_persistables, save_vars ]. 
                                  Default: None.
                                  The var_list is only used to get name, 
                                  will not be modified.
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
    Returns:
        state_dict(dict): the dict store Parameter and optimizer information

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")
            
    """
H
hong 已提交
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]
    elif model_prefix.endswith(".pdmodel"):
        model_prefix = model_prefix[:-8]

    parameter_file_name = model_prefix + ".pdparams"
    if not os.path.exists(parameter_file_name):
        # model file saved with fluid.save is not found, try to load model file saved with
        # [save_vars, save_params, save_persistables]
        _logger.warning(
            "{} not found, try to load model file saved with [ save_params, save_persistables, save_vars ]".
            format(parameter_file_name))

        var_name_list = []
        if var_list is None and os.path.isfile(model_path):
            raise ValueError(
                "var_list can not be None when model_path is a file type")

        for root, dirs, files in os.walk(model_path, topdown=False):
            for f in files:
                file_path = os.path.join(root, f)
                var_temp_name = os.path.relpath(file_path, model_path)
                var_temp_name = var_temp_name.replace("\\", "/")
                var_name_list.append(var_temp_name)

        with _load_program_scope():
            load_prog = Program()
            load_block = load_prog.global_block()

            def clone_var_to_block(block, var):
                if not isinstance(var, Variable):
                    raise TypeError("value in var_list must be variable")
                return block.create_var(
                    name=var.name,
                    shape=var.shape,
                    dtype=var.dtype,
                    type=var.type,
                    lod_level=var.lod_level
                    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR else
                    None,
                    persistable=True)

            loaded_var_list = []

            if var_list is not None:
                for var in var_list:
                    loaded_var_list.append(clone_var_to_block(load_block, var))
            else:
                for var_name in var_name_list:
                    loaded_var_list.append(
                        load_block.create_var(
                            name=var_name, persistable=True))

            place = paddle.fluid.CPUPlace()
            exe = paddle.fluid.Executor(place)

            try:
                if os.path.isfile(model_path):
                    dir_name, file_name = os.path.split(model_path)
                else:
                    dir_name = model_path
                    file_name = None
                load_vars(
                    executor=exe,
                    dirname=dir_name,
                    vars=loaded_var_list,
                    filename=file_name)
            except:
                raise RuntimeError(
                    "Failed to load model file , please make sure model file is saved with the "
                    "following APIs: save_params, save_persistables, save_vars")
            res_dict = {}
            for var in loaded_var_list:
                res_dict[var.name] = np.asarray(paddle.fluid.global_scope(
                ).find_var(var.name).get_tensor())

            return res_dict

1916
    assert os.path.exists(parameter_file_name), \
T
tangwei12 已提交
1917
        "Parameter file [{}] not exits".format(parameter_file_name)
1918 1919

    with open(parameter_file_name, 'rb') as f:
1920
        para_dict = pickle.load(f) if six.PY2 else pickle.load(
1921
            f, encoding='latin1')
1922

H
hong 已提交
1923
    opt_file_name = model_prefix + ".pdopt"
1924 1925
    if os.path.exists(opt_file_name):
        with open(opt_file_name, 'rb') as f:
1926
            opti_dict = pickle.load(f) if six.PY2 else pickle.load(
1927
                f, encoding='latin1')
1928 1929 1930 1931 1932 1933

        para_dict.update(opti_dict)

    return para_dict


1934
@dygraph_not_support
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
def set_program_state(program, state_dict):
    """
    Set program parameter from state_dict

    An exception will throw if shape or dtype of the parameters is not match. 

    NOTICE: This function MUST called after run start_up_program

    Args:
        program(Program): The program to be set
        state_dict(dict): the dict store Parameter and optimizer information
    Returns: 
        None
    
    Examples:
        .. code-block:: python
            
            import paddle.fluid as fluid
            x = fluid.data( name="x", shape=[10, 10], dtype='float32')
            y = fluid.layers.fc( x, 10)
            z = fluid.layers.fc( y, 10)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run( fluid.default_startup_program() )
            prog = fluid.default_main_program()

            fluid.save( prog, "./temp")
            program_state = fluid.load_program_state( "./temp")

H
hong 已提交
1965 1966
            fluid.set_program_state( prog, program_state)

1967 1968 1969 1970 1971 1972 1973
    """
    parameter_list = list(filter(is_persistable, program.list_vars()))

    used_para_list = {}
    for para in parameter_list:
        var_temp = paddle.fluid.global_scope().find_var(para.name)
        assert var_temp != None, \
T
tangwei12 已提交
1974
            "Variable [ {} ] Not found, Please make sure run startup program".format(para.name)
1975 1976 1977 1978
        if para.name in state_dict:
            # set value from state dict
            orig_para_np = np.array(var_temp.get_tensor())
            new_para_np = state_dict[para.name]
T
tangwei12 已提交
1979
            assert orig_para_np.shape == new_para_np.shape, \
1980
                "Parameter's shape does not match, the Program requires a parameter with the shape of ({}), " \
T
tangwei12 已提交
1981
                "while the loaded parameter (namely [ {} ]) has a shape of  ({})." \
1982
                    .format(orig_para_np.shape, para.name, new_para_np.shape)
T
tangwei12 已提交
1983
            assert orig_para_np.dtype == new_para_np.dtype, \
1984
                "Parameter's data type does not match, the Program requires a parameter with a dtype of ({}), " \
T
tangwei12 已提交
1985
                "while the loaded parameter (namely [ {} ]) has a dtype of  ({})." \
1986 1987 1988 1989 1990 1991
                    .format(orig_para_np.dtype, para.name, new_para_np.dtype)

            ten = var_temp.get_tensor()
            ten_place = ten._place()

            assert ten_place.is_gpu_place() or ten_place.is_cpu_place(), \
T
tangwei12 已提交
1992
                "Place not support, only support CPUPlace and GPUPlace, now is {}".format(str(ten_place))
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
            py_place = paddle.fluid.CPUPlace()
            if ten_place.is_cuda_pinned_place():
                place = paddle.fluid.CUDAPinnedPlace()
            elif ten_place.is_gpu_place():
                p = paddle.fluid.core.Place()
                p.set_place(ten_place)
                py_place = paddle.fluid.CUDAPlace(p.gpu_device_id())

            ten.set(new_para_np, py_place)

            used_para_list[para.name] = 1

    unused_para_list = []
    for k, v in state_dict.items():
        if k not in used_para_list:
            unused_para_list.append(k)
    if len(unused_para_list) > 0:
        warnings.warn(
            "This list is not set, Because of Paramerter not found in program. There are: {}".
            format(" ".join(unused_para_list)))