conv_cudnn_op.cu.cc 24.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

Y
Yi Wang 已提交
15 16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
18
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
Y
Yi Wang 已提交
19 20 21
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cudnn_helper.h"
K
Kexin Zhao 已提交
22
#include "paddle/fluid/platform/float16.h"
23
#include "paddle/fluid/platform/profiler.h"
武毅 已提交
24

Y
Yu Yang 已提交
25
DEFINE_bool(cudnn_deterministic, false,
C
chengduoZH 已提交
26 27
            "Whether allow using an autotuning algorithm for convolution "
            "operator. The autotuning algorithm may be non-deterministic. If "
Y
Yu Yang 已提交
28
            "true, the algorithm is deterministic.");
29 30 31 32 33
DEFINE_uint64(conv_workspace_size_limit, 4096,
              "cuDNN convolution workspace limit in MB unit.");
DEFINE_bool(cudnn_exhaustive_search, false,
            "Whether enable exhaustive search for cuDNN convolution or "
            "not, defalut is False.");
C
chengduoZH 已提交
34

武毅 已提交
35 36 37 38 39 40 41 42
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
K
update  
Kexin Zhao 已提交
43 44
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
武毅 已提交
45

46 47 48 49
static constexpr char kCUDNNFwdAlgoCache[] = "kCUDNNFwdAlgoCache";
static constexpr char kCUDNNBwdDataAlgoCache[] = "kCUDNNBwdDataAlgoCache";
static constexpr char kCUDNNBwdFilterAlgoCache[] = "kCUDNNBwdFilterAlgoCache";

Q
qiaolongfei 已提交
50 51
static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES =
    static_cast<size_t>(1024) * 1024 * 1024;
武毅 已提交
52

53 54 55 56 57 58 59
static constexpr size_t kNUM_CUDNN_FWD_ALGS =
    CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT;
static constexpr size_t kNUM_CUDNN_BWD_FILTER_ALGS =
    CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT;
static constexpr size_t kNUM_CUDNN_BWD_DATA_ALGS =
    CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT;

武毅 已提交
60
template <typename T>
61
class CUDNNConvOpKernel : public framework::OpKernel<T> {
武毅 已提交
62 63
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
64
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
武毅 已提交
65
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
66
                   "It must use CUDAPlace.");
武毅 已提交
67 68 69 70 71 72 73 74
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
75 76
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
77 78
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
武毅 已提交
79 80 81 82 83 84 85 86 87 88 89

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
90 91 92 93 94 95 96
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
97
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
98 99 100
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
101
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
102 103 104
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
105

C
chengduoZH 已提交
106 107 108 109 110 111
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
112 113

    int input_channels = input->dims()[1];
武毅 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }
    int output_channels = filter->dims()[0];
    int output_height, output_width, output_depth;
    if (output->dims().size() == 5) {
      output_depth = output->dims()[2];
      output_height = output->dims()[3];
      output_width = output->dims()[4];
    } else {
      output_depth = 1;
      output_height = output->dims()[2];
      output_width = output->dims()[3];
    }
武毅 已提交
135

武毅 已提交
136 137
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
武毅 已提交
138
    int group_offset_out =
武毅 已提交
139
        output_channels / groups * output_height * output_width * output_depth;
武毅 已提交
140 141 142 143
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
144 145 146 147 148
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
          std::max(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
武毅 已提交
149
    }
150

武毅 已提交
151 152
    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
Q
QI JUN 已提交
153
    auto handle = dev_ctx.cudnn_handle();
154
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
155

156
    bool half_float = false;
157 158 159 160 161 162 163 164 165
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    // Tensor core is supported since the volta GPU and
    // is only enabled when input and filter data are float16
    if (dev_ctx.GetComputeCapability() >= 70 &&
        std::type_index(typeid(T)) ==
            std::type_index(typeid(platform::float16))) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
      // Currently tensor core is only enabled using this algo
K
Kexin Zhao 已提交
166
      algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
167
      half_float = true;
168
      VLOG(50) << "use cudnn_tensor_op_math";
K
Kexin Zhao 已提交
169
    } else {
170 171
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_DEFAULT_MATH));
172
      VLOG(50) << "NOT use cudnn_tensor_op_math";
K
Kexin Zhao 已提交
173
    }
174
#endif
K
Kexin Zhao 已提交
175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    auto x_dims = framework::vectorize(input->dims());
    auto f_dims = framework::vectorize(filter->dims());
    if ((!exhaustive_search) && (!half_float)) {
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
          handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
          cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
          workspace_size_limit, &algo));
      VLOG(3) << "cuDNN forward algo " << algo;
    } else if (exhaustive_search && (!half_float)) {
      AlgorithmsCache<cudnnConvolutionFwdAlgo_t>* algo_cache = nullptr;
      if (ctx.scope().FindVar(kCUDNNFwdAlgoCache)) {
        algo_cache =
            ctx.scope()
                .FindVar(kCUDNNFwdAlgoCache)
                ->GetMutable<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>();
      } else {
        algo_cache =
            const_cast<framework::Scope&>(ctx.scope())
                .Var(kCUDNNFwdAlgoCache)
                ->GetMutable<AlgorithmsCache<cudnnConvolutionFwdAlgo_t>>();
      }
      algo = algo_cache->GetAlgorithm(
          x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
            int returned_algo_count;
            std::array<cudnnConvolutionFwdAlgoPerf_t, kNUM_CUDNN_FWD_ALGS>
                fwd_perf_stat;
            auto cudnn_find_func = [&](void* cudnn_workspace) {
              CUDNN_ENFORCE(
                  platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                      handle, cudnn_input_desc, input_data, cudnn_filter_desc,
                      filter_data, cudnn_conv_desc, cudnn_output_desc,
                      output_data, kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
                      fwd_perf_stat.data(), cudnn_workspace,
                      workspace_size_limit));
            };
            workspace_handle.RunFunc(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = fwd_perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return fwd_perf_stat[0].algo;
          });
      VLOG(3) << "choose algo " << algo;
    } else {
      PADDLE_ENFORCE(half_float,
                     "cuDNN exhaustive search doesn't support half float.");
    }

武毅 已提交
227
    // get workspace size able to allocate
W
Wu Yi 已提交
228
    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
武毅 已提交
229 230
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, algo, &workspace_size_in_bytes));
K
Kexin Zhao 已提交
231 232 233 234 235
    // It is possible for float16 on Volta GPU to allocate more memory than
    // the limit because the algo is overrided to use tensor core.
    PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit,
                      "workspace_size to be allocated exceeds the limit");

武毅 已提交
236
    // ------------------- cudnn conv forward ---------------------
K
update  
Kexin Zhao 已提交
237
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
238
    for (int i = 0; i < groups; i++) {
239 240 241 242 243 244 245
      auto cudnn_func = [&](void* cudnn_workspace) {
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
            handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
            cudnn_filter_desc, filter_data + i * group_offset_filter,
            cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes,
            &beta, cudnn_output_desc, output_data + i * group_offset_out));
      };
S
sneaxiy 已提交
246
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
武毅 已提交
247 248 249 250 251
    }
  }
};

template <typename T>
252
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
武毅 已提交
253 254
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
255
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
武毅 已提交
256
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
257
                   "It must use CUDAPlace.");
武毅 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
272 273
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
274 275 276 277 278 279 280
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
    if (exhaustive_search && FLAGS_cudnn_deterministic) {
      PADDLE_THROW(
          "Cann't set exhaustive_search True and "
          "FLAGS_cudnn_deterministic True at same time.");
    }
武毅 已提交
281 282 283 284 285 286 287 288 289

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_grad_desc;

    ScopedFilterDescriptor filter_desc;
    ScopedFilterDescriptor filter_grad_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
290 291 292 293 294 295 296
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
297
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
298 299 300
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
301
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
302 303 304
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
305

C
chengduoZH 已提交
306 307
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
武毅 已提交
308
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
C
chengduoZH 已提交
309 310 311 312
        output_grad_desc.descriptor<T>(
            layout, framework::vectorize2int(output_grad->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
313 314

    int input_channels = input->dims()[1];
武毅 已提交
315 316 317 318 319 320 321 322 323 324 325
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }

武毅 已提交
326
    int output_grad_channels = filter->dims()[0];
武毅 已提交
327 328 329 330 331 332 333 334 335 336
    int output_grad_height, output_grad_width, output_grad_depth;
    if (input->dims().size() == 5) {
      output_grad_depth = output_grad->dims()[2];
      output_grad_height = output_grad->dims()[3];
      output_grad_width = output_grad->dims()[4];
    } else {
      output_grad_depth = 1;
      output_grad_height = output_grad->dims()[2];
      output_grad_width = output_grad->dims()[3];
    }
武毅 已提交
337

武毅 已提交
338 339 340 341
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
    int group_offset_out = output_grad_channels / groups * output_grad_height *
                           output_grad_width * output_grad_depth;
武毅 已提交
342 343 344 345 346 347
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn backward algorithm ---------------------
    cudnnConvolutionBwdDataAlgo_t data_algo;
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
    size_t workspace_size_in_bytes = 0, tmp_size = 0;
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
348 349 350 351 352
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
          std::max(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
武毅 已提交
353 354
    }

355 356
    auto x_dims = framework::vectorize(input->dims());
    auto f_dims = framework::vectorize(filter->dims());
Q
QI JUN 已提交
357
    auto handle = dev_ctx.cudnn_handle();
358
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
武毅 已提交
359
    if (input_grad) {
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
      if (exhaustive_search) {
        AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>* data_algo_cache;
        if (ctx.scope().FindVar(kCUDNNBwdDataAlgoCache)) {
          data_algo_cache =
              ctx.scope()
                  .FindVar(kCUDNNBwdDataAlgoCache)
                  ->GetMutable<
                      AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>();
        } else {
          data_algo_cache =
              const_cast<framework::Scope&>(ctx.scope())
                  .Var(kCUDNNBwdDataAlgoCache)
                  ->GetMutable<
                      AlgorithmsCache<cudnnConvolutionBwdDataAlgo_t>>();
        }
        data_algo = data_algo_cache->GetAlgorithm(
            x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
              int returned_algo_count;
              std::array<cudnnConvolutionBwdDataAlgoPerf_t,
                         kNUM_CUDNN_BWD_DATA_ALGS>
                  data_perf_stat;
              auto cudnn_find_bd_data_func = [&](void* cudnn_workspace) {
                CUDNN_ENFORCE(
                    platform::dynload::
                        cudnnFindConvolutionBackwardDataAlgorithmEx(
                            handle, cudnn_filter_desc, filter_data,
                            cudnn_output_grad_desc, output_grad_data,
                            cudnn_conv_desc, cudnn_input_desc, input_grad_data,
                            kNUM_CUDNN_BWD_DATA_ALGS, &returned_algo_count,
                            data_perf_stat.data(), cudnn_workspace,
                            workspace_size_limit));
              };
              workspace_handle.RunFunc(cudnn_find_bd_data_func,
                                       workspace_size_limit);

              VLOG(3) << "Perf result: (algo: stat, time, memory)";
              for (int i = 0; i < returned_algo_count; ++i) {
                const auto& stat = data_perf_stat[i];
                VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                        << " " << stat.memory;
              }
              return data_perf_stat[0].algo;
            });
        VLOG(3) << "cuDNN backward data algo " << data_algo;
      } else if (FLAGS_cudnn_deterministic) {
        data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      } else {
W
Wu Yi 已提交
408
        CUDNN_ENFORCE(
C
chengduoZH 已提交
409 410 411 412 413 414 415 416 417 418 419 420
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                handle, cudnn_filter_desc,
                // dyDesc: Handle to the previously initialized input
                // differential
                // tensor descriptor.
                cudnn_output_grad_desc, cudnn_conv_desc,
                // dxDesc: Handle to the previously initialized output tensor
                // descriptor.
                cudnn_input_desc,
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &data_algo));
      }
W
Wu Yi 已提交
421
      CUDNN_ENFORCE(
武毅 已提交
422 423
          platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
              handle, cudnn_filter_desc, cudnn_output_grad_desc,
武毅 已提交
424
              cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
武毅 已提交
425 426 427 428
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }

    if (filter_grad) {
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
      if (exhaustive_search) {
        AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>* f_algo_cache;
        if (ctx.scope().FindVar(kCUDNNBwdFilterAlgoCache)) {
          f_algo_cache =
              ctx.scope()
                  .FindVar(kCUDNNBwdFilterAlgoCache)
                  ->GetMutable<
                      AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>();
        } else {
          f_algo_cache =
              const_cast<framework::Scope&>(ctx.scope())
                  .Var(kCUDNNBwdFilterAlgoCache)
                  ->GetMutable<
                      AlgorithmsCache<cudnnConvolutionBwdFilterAlgo_t>>();
        }
        filter_algo = f_algo_cache->GetAlgorithm(
            x_dims, f_dims, strides, paddings, dilations, 0, [&]() {
              int returned_algo_count;
              std::array<cudnnConvolutionBwdFilterAlgoPerf_t,
                         kNUM_CUDNN_BWD_FILTER_ALGS>
                  filter_perf_stat;
              auto cudnn_find_bd_f_func = [&](void* cudnn_workspace) {
                CUDNN_ENFORCE(
                    platform::dynload::
                        cudnnFindConvolutionBackwardFilterAlgorithmEx(
                            handle, cudnn_input_desc, input_data,
                            cudnn_output_grad_desc, output_grad_data,
                            cudnn_conv_desc, cudnn_filter_desc,
                            filter_grad_data, kNUM_CUDNN_BWD_FILTER_ALGS,
                            &returned_algo_count, filter_perf_stat.data(),
                            cudnn_workspace, workspace_size_limit));
              };
              workspace_handle.RunFunc(cudnn_find_bd_f_func,
                                       workspace_size_limit);
              return filter_perf_stat[0].algo;
            });
        VLOG(3) << "cuDNN backward filter algo " << filter_algo;
      } else if (FLAGS_cudnn_deterministic) {
        filter_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
      } else {
W
Wu Yi 已提交
470
        CUDNN_ENFORCE(
C
chengduoZH 已提交
471 472 473 474 475 476
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                handle, cudnn_input_desc, cudnn_output_grad_desc,
                cudnn_conv_desc, cudnn_filter_desc,
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &filter_algo));
      }
W
Wu Yi 已提交
477
      CUDNN_ENFORCE(
武毅 已提交
478 479 480 481 482
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
              cudnn_filter_desc, filter_algo, &tmp_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
483

武毅 已提交
484
    // ------------------- cudnn conv backward data ---------------------
K
update  
Kexin Zhao 已提交
485
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
武毅 已提交
486 487
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
488 489
      // Because beta is zero, it is unnecessary to reset input_grad.

武毅 已提交
490
      for (int i = 0; i < groups; i++) {
491 492 493 494 495 496 497 498
        auto cudnn_func = [&](void* cudnn_workspace) {
          CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
              handle, &alpha, cudnn_filter_desc,
              filter_data + i * group_offset_filter, cudnn_output_grad_desc,
              output_grad_data + i * group_offset_out, cudnn_conv_desc,
              data_algo, cudnn_workspace, workspace_size_in_bytes, &beta,
              cudnn_input_desc, input_grad_data + i * group_offset_in));
        };
S
sneaxiy 已提交
499
        workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
武毅 已提交
500 501 502 503 504
      }
    }
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
505
      // Because beta is zero, it is unnecessary to reset filter_grad.
武毅 已提交
506
      for (int i = 0; i < groups; i++) {
507 508 509 510 511 512 513 514
        auto cudnn_func = [&](void* cudnn_workspace) {
          CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
              handle, &alpha, cudnn_input_desc,
              input_data + i * group_offset_in, cudnn_output_grad_desc,
              output_grad_data + i * group_offset_out, cudnn_conv_desc,
              filter_algo, cudnn_workspace, workspace_size_in_bytes, &beta,
              cudnn_filter_desc, filter_grad_data + i * group_offset_filter));
        };
S
sneaxiy 已提交
515
        workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
武毅 已提交
516 517 518 519 520 521 522 523
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

K
Kexin Zhao 已提交
524 525
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
526
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
527
                   paddle::operators::CUDNNConvOpKernel<double>,
K
Kexin Zhao 已提交
528
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
529
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
530
                   paddle::operators::CUDNNConvGradOpKernel<float>,
C
chengduo 已提交
531 532
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
533

K
Kexin Zhao 已提交
534
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
535
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
536 537
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
538
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
539
                   paddle::operators::CUDNNConvGradOpKernel<float>,
540
                   paddle::operators::CUDNNConvGradOpKernel<double>);