unpool_grad_kernel.cc 5.1 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/unpool_grad_kernel.h"

#include <algorithm>
#include <string>
#include <vector>

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {

template <typename T, typename Context>
void UnpoolGradKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& indices,
                      const DenseTensor& out,
                      const DenseTensor& out_grad,
                      const std::vector<int>& ksize,
                      const std::vector<int>& strides,
                      const std::vector<int>& paddings,
36
                      const IntArray& output_size,
X
xiaoting 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
                      const std::string& data_format,
                      DenseTensor* x_grad) {
  T* input_grad_data = dev_ctx.template Alloc<T>(x_grad);
  const T* output_grad_data = out_grad.data<T>();
  phi::funcs::SetConstant<Context, T> zero;
  zero(dev_ctx, x_grad, static_cast<T>(0));
  const int batch_size = x.dims()[0];
  const int input_height = x.dims()[2];
  const int input_width = x.dims()[3];
  const int output_channels = out.dims()[1];
  const int output_height = out.dims()[2];
  const int output_width = out.dims()[3];
  int input_feasize = input_height * input_width;
  int output_feasize = output_height * output_width;
  const int* indices_data = indices.data<int>();

  for (int b = 0; b < batch_size; ++b) {
    for (int c = 0; c < output_channels; ++c) {
      for (int i = 0; i < input_feasize; ++i) {
        int index = indices_data[i];
        PADDLE_ENFORCE_LT(
            index,
            output_feasize,
            phi::errors::InvalidArgument(
                "index should less than output tensor height * output tensor "
                "width. Expected %ld < %ld, but got "
                "%ld >= %ld. Please check input value.",
                index,
                output_feasize,
                index,
                output_feasize));
        input_grad_data[i] = output_grad_data[index];
      }
      input_grad_data += input_feasize;
      indices_data += input_feasize;
      output_grad_data += output_feasize;
    }
  }
}

template <typename T, typename Context>
void Unpool3dGradKernel(const Context& dev_ctx,
                        const DenseTensor& x,
                        const DenseTensor& indices,
                        const DenseTensor& out,
                        const DenseTensor& out_grad,
                        const std::vector<int>& ksize,
                        const std::vector<int>& strides,
                        const std::vector<int>& paddings,
                        const std::vector<int>& output_size,
                        const std::string& data_format,
                        DenseTensor* x_grad) {
  T* input_grad_data = dev_ctx.template Alloc<T>(x_grad);
  const T* output_grad_data = out_grad.data<T>();
  phi::funcs::SetConstant<Context, T> zero;
  zero(dev_ctx, x_grad, static_cast<T>(0));

  const int batch_size = x.dims()[0];
  const int input_depth = x.dims()[2];
  const int input_height = x.dims()[3];
  const int input_width = x.dims()[4];
  const int output_channels = out.dims()[1];
  const int output_depth = out.dims()[2];
  const int output_height = out.dims()[3];
  const int output_width = out.dims()[4];
  int input_feasize = input_depth * input_height * input_width;
  int output_feasize = output_depth * output_height * output_width;
  const int* indices_data = indices.data<int>();

  for (int b = 0; b < batch_size; ++b) {
    for (int c = 0; c < output_channels; ++c) {
      for (int i = 0; i < input_feasize; ++i) {
        int index = indices_data[i];
        PADDLE_ENFORCE_LT(
            index,
            output_feasize,
            phi::errors::InvalidArgument(
                "index should less than output tensor depth * output tensor "
                "height "
                "* output tensor width. Expected %ld < %ld, but got "
                "%ld >= %ld. Please check input value.",
                index,
                output_feasize,
                index,
                output_feasize));
        input_grad_data[i] = output_grad_data[index];
      }
      input_grad_data += input_feasize;
      indices_data += input_feasize;
      output_grad_data += output_feasize;
    }
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(
    unpool_grad, CPU, ALL_LAYOUT, phi::UnpoolGradKernel, float, double) {}

PD_REGISTER_KERNEL(
    unpool3d_grad, CPU, ALL_LAYOUT, phi::Unpool3dGradKernel, float, double) {}