flatten_op_npu.cc 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/operators/flatten_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename T>
class Flatten2NPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *in = context.Input<framework::LoDTensor>("X");
    auto *out = context.Output<framework::LoDTensor>("Out");
    auto &axis = context.Attr<int>("axis");
    out->mutable_data(context.GetPlace(), in->type());
    framework::NPUAttributeMap attr_input = {{"axis", axis}};

    auto stream =
        context.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    const auto &runner = NpuOpRunner("FlattenV2", {*in}, {*out}, attr_input);
    runner.Run(stream);
  }
};
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

template <typename T>
class Flatten2GradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto *d_out =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));

    auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());

    d_x->mutable_data(ctx.GetPlace(), d_out->type());
    framework::TensorCopy(
        *d_out, ctx.GetPlace(),
        ctx.template device_context<paddle::platform::NPUDeviceContext>(), d_x);
    d_x->Resize(x_dims);
  }
};

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class FlattenContiguousRangeNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *X = ctx.Input<Tensor>("X");
    auto *Out = ctx.Output<Tensor>("Out");
    int start_axis = ctx.Attr<int>("start_axis");
    int stop_axis = ctx.Attr<int>("stop_axis");

    Out->mutable_data<T>(ctx.GetPlace());

    const auto &runner =
        NpuOpRunner("FlattenV2", {*X}, {*Out},
                    {{"axis", static_cast<int32_t>(start_axis)},
                     {"end_axis", static_cast<int32_t>(stop_axis)}});
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
    runner.Run(stream);
  }
};

81 82 83 84 85 86 87 88 89 90 91
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(flatten2, ops::Flatten2NPUKernel<float>,
                       ops::Flatten2NPUKernel<double>,
                       ops::Flatten2NPUKernel<uint8_t>,
                       ops::Flatten2NPUKernel<int>,
                       ops::Flatten2NPUKernel<int8_t>,
                       ops::Flatten2NPUKernel<int64_t>);
92 93 94 95 96 97
REGISTER_OP_NPU_KERNEL(flatten2_grad, ops::Flatten2GradNPUKernel<float>,
                       ops::Flatten2GradNPUKernel<double>,
                       ops::Flatten2GradNPUKernel<uint8_t>,
                       ops::Flatten2GradNPUKernel<int>,
                       ops::Flatten2GradNPUKernel<int8_t>,
                       ops::Flatten2GradNPUKernel<int64_t>);
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

REGISTER_OP_NPU_KERNEL(
    flatten_contiguous_range,
    ops::FlattenContiguousRangeNPUKernel<paddle::platform::NPUDeviceContext,
                                         float>,
    ops::FlattenContiguousRangeNPUKernel<paddle::platform::NPUDeviceContext,
                                         double>,
    ops::FlattenContiguousRangeNPUKernel<paddle::platform::NPUDeviceContext,
                                         uint8_t>,
    ops::FlattenContiguousRangeNPUKernel<paddle::platform::NPUDeviceContext,
                                         int>,
    ops::FlattenContiguousRangeNPUKernel<paddle::platform::NPUDeviceContext,
                                         int8_t>,
    ops::FlattenContiguousRangeNPUKernel<paddle::platform::NPUDeviceContext,
                                         int64_t>);