clip_op.h 2.4 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T, size_t D, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;

template <typename Place, typename T>
class ClipKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
W
wanghaoshuang 已提交
33 34
    auto max = context.op().Attr<float>("max");
    auto min = context.op().Attr<float>("min");
W
wanghaoshuang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48
    auto* x = context.Input<Tensor>("X");
    auto* out = context.Output<Tensor>("Out");
    out->mutable_data<T>(context.GetPlace());
    auto x_tensor = EigenTensor<T, 2>::From(*x);
    auto out_tensor = EigenTensor<T, 2>::From(*out);
    auto place = context.GetEigenDevice<Place>();
    out_tensor.device(place) = x_tensor.cwiseMin(max).cwiseMax(min);
  }
};

template <typename T>
class ClipGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
W
wanghaoshuang 已提交
49 50
    auto max = context.op().Attr<float>("max");
    auto min = context.op().Attr<float>("min");
W
wanghaoshuang 已提交
51 52
    auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
W
wanghaoshuang 已提交
53
    auto* x = context.Input<Tensor>("X");
W
wanghaoshuang 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    auto dims = d_x->dims();
    size_t count = 1;
    for (int i = 0; i < dims.size(); ++i) {
      count *= dims[i];
    }

    auto d_x_data = d_x->mutable_data<T>(context.GetPlace());
    auto d_out_data = d_out->data<T>();
    auto x_data = x->data<T>();
    for (int i = 0; i < count; ++i) {
      d_x_data[i] = d_out_data[i] * (x_data[i] > min && x_data[i] < max);
    }
  }
};

}  // namespace operators
}  // namespace paddle