test_rmsprop_op.py 7.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import unittest
18

19
import numpy as np
20 21
import paddle.fluid.core as core
from paddle.fluid.op import Operator
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
import paddle.fluid as fluid


def create_selected_rows_and_tensor(scope, place, height, row_num,
                                    embedding_size):
    sr = scope.var("@selected_rows@").get_selected_rows()
    tensor = scope.var("grad").get_tensor()

    rows = np.random.random_integers(
        low=0, high=height - 1, size=[row_num, ]).astype('int64')
    sr_val = np.random.random(size=[row_num, embedding_size]).astype('float32')

    sr.set_height(height)
    sr.set_rows(rows)
    sr.get_tensor().set(sr_val, place)

    tensor_val = np.zeros(shape=[height, embedding_size], dtype='float32')
    for i in range(row_num):
        row = rows[i]
        tensor_val[row, :] = tensor_val[row, :] + sr_val[i, :]

    tensor.set(tensor_val, place)
    return tensor_val, sr_val
45 46 47


class TestBase(unittest.TestCase):
48 49 50 51 52 53 54
    def setup(self,
              place,
              is_sparse,
              centered,
              size,
              row_num=None,
              epsilon=1e-6):
55 56
        np.random.seed(5)  # fix seed

57 58 59
        self.scope = fluid.global_scope()
        self.place = place

60
        self.param_name = "param"
61
        self.param = np.random.random(size).astype("float32")
62 63

        self.mean_square_name = "mean_square"
64 65
        self.mean_square = np.random.uniform(
            low=1, high=2, size=size).astype("float32")
66 67

        self.mean_grad_name = "mean_grad"
68
        self.mean_grad = np.random.random(size).astype("float32")
69 70 71 72 73

        self.lr_name = "lr"
        self.learning_rate = np.array([0.01]).astype("float32")

        self.grad_name = "grad"
74 75 76 77 78 79 80 81 82 83

        self.is_sparse = is_sparse
        if self.is_sparse:
            self.grad_sr_name = "@selected_rows@"
            self.grad, self.grad_sr = create_selected_rows_and_tensor(
                self.scope, place, size[0], row_num, size[1])
        else:
            self.grad = np.random.random(size).astype("float32")
            grad_tensor = self.scope.var(self.grad_name).get_tensor()
            grad_tensor.set(self.grad, place)
84 85

        self.moment_name = "moment"
86 87
        self.moment = np.random.uniform(
            low=0, high=1, size=size).astype("float32")
88 89 90

        self.epsilon = epsilon
        self.decay = 0.9
91
        self.momentum = 0.1
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        self.centered = centered

        self.ms_out = self.decay * self.mean_square + (1 - self.decay
                                                       ) * self.grad * self.grad
        if centered:
            self.mg_out = self.decay * self.mean_grad + (1 - self.decay
                                                         ) * self.grad
            self.moment_out = self.momentum * self.moment + \
                              self.learning_rate * self.grad / np.sqrt(self.ms_out - np.square(self.mg_out) + self.epsilon)
        else:
            self.moment_out = self.momentum * self.moment + \
                              self.learning_rate * self.grad / np.sqrt(self.ms_out + self.epsilon)

        self.param_out = self.param - self.moment_out

        # create and initialize Param Variable
108 109
        self.param_tensor = self.scope.var(self.param_name).get_tensor()
        self.param_tensor.set(self.param, place)
110

111 112 113
        self.mean_square_tensor = self.scope.var(
            self.mean_square_name).get_tensor()
        self.mean_square_tensor.set(self.mean_square, place)
114

115
        lr = self.scope.var(self.lr_name).get_tensor()
116 117
        lr.set(self.learning_rate, place)

118 119
        self.moment_tensor = self.scope.var(self.moment_name).get_tensor()
        self.moment_tensor.set(self.moment, place)
120

121 122 123 124
        if self.centered:
            self.mean_grad_tensor = self.scope.var(
                self.mean_grad_name).get_tensor()
            self.mean_grad_tensor.set(self.mean_grad, place)
125

126 127 128 129 130 131
    def check(self, actual_t, expect_t, place, out_name, atol=1e-5):
        self.assertTrue(
            np.allclose(
                actual_t, expect_t, atol=atol),
            "Output (" + out_name + ") has diff at " + str(place) + "\nExpect "
            + str(expect_t) + "\n" + "But Got" + str(actual_t))
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

class TestRmspropOp(TestBase):
    def check_with_place(self,
                         place,
                         is_sparse,
                         centered,
                         size,
                         row_num=None,
                         epsilon=1e-6):
        self.setup(place, is_sparse, centered, size, row_num, epsilon)
        self.run_and_check()

    def run_and_check(self):
        grad_name = self.grad_sr_name if self.is_sparse else self.grad_name

        kwargs = {
            'Param': self.param_name,
            'Grad': grad_name,
            'MeanSquare': self.mean_square_name,
            'Moment': self.moment_name,
            'LearningRate': self.lr_name,
            'ParamOut': self.param_name,
            'MeanSquareOut': self.mean_square_name,
            'MomentOut': self.moment_name,
            'epsilon': self.epsilon,
            'decay': self.decay,
            'momentum': self.momentum,
            'centered': self.centered
        }
162 163

        if self.centered:
164 165 166 167 168 169 170
            kwargs['MeanGrad'] = self.mean_grad_name
            kwargs['MeanGradOut'] = self.mean_grad_name

        rmsprop_op = Operator('rmsprop', **kwargs)
        atol = 1e-6

        rmsprop_op.run(self.scope, self.place)
171 172

        self.check(
173 174 175 176 177
            np.array(self.mean_square_tensor),
            self.ms_out,
            self.place,
            self.mean_square_name,
            atol=atol)
178
        self.check(
179
            np.array(self.moment_tensor),
180
            self.moment_out,
181
            self.place,
182
            self.moment_name,
183
            atol=atol)
184
        self.check(
185
            np.array(self.param_tensor),
186
            self.param_out,
187
            self.place,
188
            self.param_name,
189
            atol=atol)
190 191 192

        if self.centered:
            self.check(
193 194
                np.array(self.mean_grad_tensor), self.mg_out, self.place,
                self.mean_grad_name)
195 196 197 198 199

    def test_rmsprop(self):
        places = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))
200 201

        size = (128, 320)
202
        for place in places:
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
            for centered in [False, True]:
                with fluid.scope_guard(core.Scope()):
                    self.check_with_place(
                        place, is_sparse=False, centered=centered, size=size)

                with fluid.scope_guard(core.Scope()):
                    self.check_with_place(
                        place,
                        is_sparse=True,
                        centered=centered,
                        row_num=512,
                        size=size)

                with fluid.scope_guard(core.Scope()):
                    self.check_with_place(
                        place,
                        is_sparse=True,
                        centered=centered,
                        row_num=60,
                        size=size)
223 224


225 226
if __name__ == "__main__":
    unittest.main()